32 resultados para Cosmic physics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Fa uns mesos, en un viatge que vaig fer als UA, vaig tenir ocasió de visitar les restes de diversos pobles construïts pels nadius americans segles abans de l'arribada dels europeus, incloent-hi ciutats, temples, granges, estadis esportius i un gran nombre de gravats i pintures rupestres, tots ells magnífics representants d'una important i civilitzada cultura al santípodes dels cànons imposats per Hollywood. En un d'aquests llocs vaig poder llegir un advertiment que, traduït al català, deia: "Es processarà els lladres del temps". Lladres del temps. Què volien dir amb aquesta expressió? No tenia pas cap intenció d'incórrer en un delicte pel qual pogués ser processat [...].
Resumo:
We derive the back reaction on the gravitational field of a straight cosmic string during its formation due to the gravitational coupling of the string to quantum matter fields. A very simple model of string formation is considered. The gravitational field of the string is computed in the linear approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction effect is obtained by solving perturbatively the semiclassical Einsteins equations.
Resumo:
We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter-dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.
Resumo:
The Einstein equations coupled with a cloud of geometric strings for a five-dimensional Bianchi type-I cosmological model are studied. The cosmological consequences of having strings along the fifth dimension are examined. Particular solutions with dynamical compactifications of the extra dimensions and compatibility with expanding three-dimensional spaces are presented.
Resumo:
A weak version of the cosmic censorship hypothesis is implemented as a set of boundary conditions on exact semiclassical solutions of two-dimensional dilaton gravity. These boundary conditions reflect low-energy matter from the strong coupling region and they also serve to stabilize the vacuum of the theory against decay into negative energy states. Information about low-energy incoming matter can be recovered in the final state but at high energy black holes are formed and inevitably lead to information loss at the semiclassical level.
Resumo:
The 1st chapter of this work presents the different experiments and collaborations in which I am involved during my PhD studies of Physics. Following those descriptions, the 2nd chapter is dedicated to how the radiation affects the silicon sensors, as well as some experimental measurements carried out at CERN (Geneve, Schwitzerland) and IFIC (Valencia, Spain) laboratories. Besides the previous investigation results, this chapter includes the most recent scientific papers appeared in the latest RD50 (Research & Development #50) Status Report, published in January 2007, as well as some others published this year. The 3rd and 4th are dedicated to the simulation of the electrical behavior of solid state detectors. In chapter 3 are reported the results obtained for the illumination of edgeless detectors irradiated at different fluences, in the framework of the TOSTER Collaboration. The 4th chapter reports about simulation design, simulation and fabrication of a novel 3D detector developed at CNM for ions detection in the future ITER fusion reactor. This chapter will be extended with irradiation simulations and experimental measurements in my PhD Thesis.
Resumo:
An alternative approach to the fundamental general physics concepts has been proposed. We demonstrate that the electrostatic potential energy of a discrete or a continuous system of charges should be stored by the charges and not the field. It is found that there is a possibility that any electric field has no energy density, as well as magnetic field. It is found that there is no direct relation between the electric or magnetic energy and photons. An alternative derivation of the blackbody radiation formula is proposed. It is also found that the zero-point of energy of electromagnetic radiation may not exist.
Resumo:
In this article we present a hybrid approach for automatic summarization of Spanish medical texts. There are a lot of systems for automatic summarization using statistics or linguistics, but only a few of them combining both techniques. Our idea is that to reach a good summary we need to use linguistic aspects of texts, but as well we should benefit of the advantages of statistical techniques. We have integrated the Cortex (Vector Space Model) and Enertex (statistical physics) systems coupled with the Yate term extractor, and the Disicosum system (linguistics). We have compared these systems and afterwards we have integrated them in a hybrid approach. Finally, we have applied this hybrid system over a corpora of medical articles and we have evaluated their performances obtaining good results.
Resumo:
Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.
Resumo:
To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.