18 resultados para Control Scale
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The six most important cost-effective policies on tobacco control can be measured by the Tobacco Control Scale (TCS). The objective of our study was to describe the correlation between the TCS and smoking prevalence, self-reported exposure to secondhand smoke (SHS) and attitudes towards smoking restrictions in the 27 countries of the European Union (EU27).
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
In this paper, we address this problem through the design of a semiactive controller based on the mixed H2/H∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H2/H∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evaluated in a real-time hybrid testing facility that consists of a physical specimen (a small-scale magnetorheological damper) and a numerical model (a large-scale three-story building)
Resumo:
The Mechatronics Research Centre (MRC) owns a small scale robot manipulator called aMini-Mover 5. This robot arm is a microprocessor-controlled, six-jointed mechanical armdesigned to provide an unusual combination of dexterity and low cost.The Mini-Mover-5 is operated by a number of stepper motors and is controlled by a PCparallel port via a discrete logic board. The manipulator also has an impoverished array ofsensors.This project requires that a new control board and suitable software be designed to allow themanipulator to be controlled from a PC. The control board will also provide a mechanism forthe values measured using some sensors to be returned to the PC.On this project I will consider: stepper motor control requirements, sensor technologies,power requirements, USB protocols, USB hardware and software development and controlrequirements (e.g. sample rates).In this report we will have a look at robots history and background, as well as we willconcentrate how stepper motors and parallel port work
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
Background: Recent research based on comparisons between bilinguals and monolinguals postulates that bilingualism enhances cognitive control functions, because the parallel activation of languages necessitates control of interference. In a novel approach we investigated two groups of bilinguals, distinguished by their susceptibility to cross-language interference, asking whether bilinguals with strong language control abilities ('non-switchers") have an advantage in executive functions (inhibition of irrelevant information, problem solving, planning efficiency, generative fluency and self-monitoring) compared to those bilinguals showing weaker language control abilities ('switchers"). Methods: 29 late bilinguals (21 women) were evaluated using various cognitive control neuropsychological tests [e.g., Tower of Hanoi, Ruff Figural Fluency Task, Divided Attention, Go/noGo] tapping executive functions as well as four subtests of the Wechsler Adult Intelligence Scale. The analysis involved t-tests (two independent samples). Non-switchers (n = 16) were distinguished from switchers (n = 13) by their performance observed in a bilingual picture-naming task. Results: The non-switcher group demonstrated a better performance on the Tower of Hanoi and Ruff Figural Fluency task, faster reaction time in a Go/noGo and Divided Attention task, and produced significantly fewer errors in the Tower of Hanoi, Go/noGo, and Divided Attention tasks when compared to the switchers. Non-switchers performed significantly better on two verbal subtests of the Wechsler Adult Intelligence Scale (Information and Similarity), but not on the Performance subtests (Picture Completion, Block Design). Conclusions: The present results suggest that bilinguals with stronger language control have indeed a cognitive advantage in the administered tests involving executive functions, in particular inhibition, self-monitoring, problem solving, and generative fluency, and in two of the intelligence tests. What remains unclear is the direction of the relationship between executive functions and language control abilities.
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
The aim of this study is to provide an instrument for measuring service quality in sports enterprises from the point of view of the customers. For this purpose we intend to elaborate an enquiry starting out from a more general scale called SERVIQUAL. We have limited our research project to sports enterprises where the customer participates actively, i.e., we have excluded sports clubs and other organizations which offer sport as entertainment. Our choice is mainly due to the fact that few studies have been carried out in this area and that sports has been earning an increasing amount of adepts during the last decades in Spain. The DELPHI method has been applied with the collaboration of a panel of experts in order to evaluate the viability and adequacy of the modified SERVQUAL scale.
Resumo:
Biofilters degrade only a small fraction of the natural organic matter (NOM) contained in seawater which is the leading cause of biofouling in downstream processes. This work studies the effects of chemical additions on NOM biodegradation by biofilters. In this work, biofiltration of seawater with an empty bed contact time (EBCT) of 6 min and a hydraulic loading rate of 10 m h-1 reduces the biological oxygen demand (BOD7) by 8%, the dissolved organic carbon (DOC) by 6% and the UV absorbance at 254 nm (A254) by 7%. Different amounts of ammonium chloride are added to the seawater (up to twice the total dissolved nitrogen in untreated seawater) to study its possible effect on the removal of NOM by a pilot-scale biofilter. Seawater is amended with different amounts of easily biodegradable dissolved organic carbon (BDOC) supplied as sodium acetate (up to twice the DOC) for the same purpose. The results of this work reveal that the ammonium chloride additions do not significantly affect NOM removal and the sodium acetate is completely consumed by the biofiltration process. For both types of chemical additions, the BOD7, DOC and A254 in the outlet stream of the biofilter are similar to the values for the untreated control. These results indicate that this biofilter easily removes the BDOC from the seawater when the EBCT is not above 6 min. Furthermore, nitrogen does not limit the NOM biodegradation in seawater under these experimental conditions.
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
Immersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application. The participant in the IVR is represented in the destination by a physical robot (TO) and simultaneously the remote place and entities within it are represented to the participant in the IVR. Hence, the IVR participant has a normal virtual reality experience, but where his or her actions and behaviour control the remote robot and can therefore have physical consequences. Here, we show how such a system can be deployed to allow a human and a rat to operate together, but the human interacting with the rat on a human scale, and the rat interacting with the human on the rat scale. The human is represented in a rat arena by a small robot that is slaved to the human"s movements, whereas the tracked rat is represented to the human in the virtual reality by a humanoid avatar. We describe the system and also a study that was designed to test whether humans can successfully play a game with the rat. The results show that the system functioned well and that the humans were able to interact with the rat to fulfil the tasks of the game. This system opens up the possibility of new applications in the life sciences involving participant observation of and interaction with animals but at human scale.
Resumo:
The Anti-Atlas basement massif extends South of the High Atlas, and, despite a very mild Cenozoic deformation, its altitude exceeds 1500m in large areas, reaching 3305m in Jbel Sirwa. Structural contours of the present elevation of a polygenic planation surface (the High Erosional surface) and of the base of Cretaceous and Neogene inliers have been performed to characterize the major tectonic structures. Gentle Cenozoic WSW-ENE- and N-Strending folds, of 60 to100km wavelength, reactivate Variscan structures, being the major contributors to the local topography of the Anti-Atlas. Reactivated thrusts of decakilometric to kilometric-scale and E-W trend involving the Neogene rocks exhibit a steep attitude and a small displacement, but they also produce a marked topographic expression. The resulting Cenozoic horizontal shortening along N-S sections across the Anti-Atlas is about 1%. The position of the major anticlinal hinges determines the location of the fluvial divides of the Warzazat basin and the Anti-Atlas, and a structural depression on one of these hinges (Jbel Saghro anticline) allowed the formerly endorheic Warzazat basin to drain southwards. The first Cenozoic structures generating local topography are of pre-mid Miocene age (postdated by 6.7Ma volcanic rocks at the Jbel Saghro), whereas the youngest thrust movements postdate the Pliocene sedimentary and volcanic rocks (involving 2.1Ma volcanic rocks at Jbel Sirwa). In addition to these features, the mean elevation of the Anti-Atlas at the regional scale is also the result of a mantle thermal anomaly reported in previous works for the entire Atlas system.
Resumo:
Background: Recent research based on comparisons between bilinguals and monolinguals postulates that bilingualism enhances cognitive control functions, because the parallel activation of languages necessitates control of interference. In a novel approach we investigated two groups of bilinguals, distinguished by their susceptibility to cross-language interference, asking whether bilinguals with strong language control abilities ('non-switchers") have an advantage in executive functions (inhibition of irrelevant information, problem solving, planning efficiency, generative fluency and self-monitoring) compared to those bilinguals showing weaker language control abilities ('switchers"). Methods: 29 late bilinguals (21 women) were evaluated using various cognitive control neuropsychological tests [e.g., Tower of Hanoi, Ruff Figural Fluency Task, Divided Attention, Go/noGo] tapping executive functions as well as four subtests of the Wechsler Adult Intelligence Scale. The analysis involved t-tests (two independent samples). Non-switchers (n = 16) were distinguished from switchers (n = 13) by their performance observed in a bilingual picture-naming task. Results: The non-switcher group demonstrated a better performance on the Tower of Hanoi and Ruff Figural Fluency task, faster reaction time in a Go/noGo and Divided Attention task, and produced significantly fewer errors in the Tower of Hanoi, Go/noGo, and Divided Attention tasks when compared to the switchers. Non-switchers performed significantly better on two verbal subtests of the Wechsler Adult Intelligence Scale (Information and Similarity), but not on the Performance subtests (Picture Completion, Block Design). Conclusions: The present results suggest that bilinguals with stronger language control have indeed a cognitive advantage in the administered tests involving executive functions, in particular inhibition, self-monitoring, problem solving, and generative fluency, and in two of the intelligence tests. What remains unclear is the direction of the relationship between executive functions and language control abilities.