114 resultados para Continuous random network
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A continuous random variable is expanded as a sum of a sequence of uncorrelated random variables. These variables are principal dimensions in continuous scaling on a distance function, as an extension of classic scaling on a distance matrix. For a particular distance, these dimensions are principal components. Then some properties are studied and an inequality is obtained. Diagonal expansions are considered from the same continuous scaling point of view, by means of the chi-square distance. The geometric dimension of a bivariate distribution is defined and illustrated with copulas. It is shown that the dimension can have the power of continuum.
Resumo:
Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.
Resumo:
We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper, we address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case, some interesting features arise, such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
Resumo:
The continuous-time random walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this paper we will show how the random combination of two different unbiased CTRWs can give rise to a process with clear drift, if one of them is a CTRW with memory. If one identifies the other one as noise, the effect can be thought of as a kind of stochastic resonance. The ultimate origin of this phenomenon is the same as that of the Parrondo paradox in game theory.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.
Resumo:
We analyse in a unified way how the presence of a trader with privilege information makes the market to be efficient when the release time is known. We establish a general relation between the problem of finding an equilibrium and the problem of enlargement of filtrations. We also consider the case where the time of announcement is random. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time.
Resumo:
Sobriety checkpoints are not usually randomly located by traffic authorities. As such, information provided by non-random alcohol tests cannot be used to infer the characteristics of the general driving population. In this paper a case study is presented in which the prevalence of alcohol-impaired driving is estimated for the general population of drivers. A stratified probabilistic sample was designed to represent vehicles circulating in non-urban areas of Catalonia (Spain), a region characterized by its complex transportation network and dense traffic around the metropolis of Barcelona. Random breath alcohol concentration tests were performed during spring 2012 on 7,596 drivers. The estimated prevalence of alcohol-impaired drivers was 1.29%, which is roughly a third of the rate obtained in non-random tests. Higher rates were found on weekends (1.90% on Saturdays, 4.29% on Sundays) and especially at night. The rate is higher for men (1.45%) than for women (0.64%) and the percentage of positive outcomes shows an increasing pattern with age. In vehicles with two occupants, the proportion of alcohol-impaired drivers is estimated at 2.62%, but when the driver was alone the rate drops to 0.84%, which might reflect the socialization of drinking habits. The results are compared with outcomes in previous surveys, showing a decreasing trend in the prevalence of alcohol-impaired drivers over time.
Resumo:
We study the behavior of the random-bond Ising model at zero temperature by numerical simulations for a variable amount of disorder. The model is an example of systems exhibiting a fluctuationless first-order phase transition similar to some field-induced phase transitions in ferromagnetic systems and the martensitic phase transition appearing in a number of metallic alloys. We focus on the study of the hysteresis cycles appearing when the external field is swept from positive to negative values. By using a finite-size scaling hypothesis, we analyze the disorder-induced phase transition between the phase exhibiting a discontinuity in the hysteresis cycle and the phase with the continuous hysteresis cycle. Critical exponents characterizing the transition are obtained. We also analyze the size and duration distributions of the magnetization jumps (avalanches).
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.
Resumo:
We consider an infinite number of noninteracting lattice random walkers with the goal of determining statistical properties of the time, out of a total time T, that a single site has been occupied by n random walkers. Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the origin, which is unoccupied. The random-walk model is taken to be a continuous-time random walk and the pausing-time density at the target site is allowed to differ from the pausing-time density at other sites. We calculate the dependence of the mean time of occupancy by n random walkers as a function of n and the observation time T. We also find the variance for the cumulative time during which the site is unoccupied. The large-T behavior of the variance differs according as the random walk is transient or recurrent. It is shown that the variance is proportional to T at large T in three or more dimensions, it is proportional to T3/2 in one dimension and to TlnT in two dimensions.