31 resultados para Conductivity electric
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The aim of this paper is to discover the origins of utility regulation in Spain, and to analyse, from a microeconomic perspective, its characteristics and the impact of regulation on consumers and utilities. Madrid and the Madrilenian utilities are taken as a case study. The electric industry in the period studied was a natural monopoly2. Each of the three phases of production, generation, transmission and distribution, had natural monopoly characteristics. Therefore, the most efficient form to generate, transmit and distribute electricity was the monopoly because one firm can produce a quantity at a lower cost than the sum of costs incurred by two or more firms. A problem arises because when a firm is the single provider it can charge prices above the marginal cost, at monopoly prices. When a monopolist reduces the quantity produced, price increases, causing the consumer to demand less than the economic efficiency level, incurring a loss of consumer surplus. The loss of the consumer surplus is not completely gained by the monopolist, causing a loss of social surplus, a deadweight loss. The main objective of regulation is going to be to reduce to a minimum the deadweight loss. Regulation is also needed because when the monopolist fixes prices at marginal cost equal marginal revenue there would be an incentive for firms to enter the market creating inefficiency. The Madrilenian industry has been chosen because of the availability of statistical information on costs and production. The complex industry structure and the atomised demand add interest to the analysis. This study will also provide some light on the tariff regulation of the period which has been poorly studied and will complement the literature on the US electric utilities regulation where a different type of regulation was implemented.
Resumo:
Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fi bers), albeit with a modi fied "Trouton ratio". However, with a symmetry-breaking electric field gradient applied, behavior deviates from the Newtonian case, and the sheet can undergo fi nite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations.
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
Els monopols es defineixen, teòricament, com càrregues que generen camps amb divergència diferent de cero. Malgrat això, les entitats amb comportament mimètic al dels monopols magnètics, segueix sent compatible amb ∇·B=0, han estat detectades experimentalment en gels d’espín (‘spin-ices’). Aquesta aparent contradicció pot generar confusió i, per tant, requereix explicació. D’altra banda, s’estudien propietats duals del materials amb càrregues magnètiques efectives tals com la ‘magnetricity’ en els ‘spinices’ (conductivitat de les càrregues magnètiques davant un camp magnètic extern). Com una conseqüència de la magnetricitat, l’apantallament del camp magnètic en materials amb càrregues magnètiques és analitzat. Estudio la propagació d’ones electromagnètiques transversals en medis materials infinits i en plasmes magnètics diluïts davant la presència de camps elèctrics externs constants. Aquesta propagació és dual a la propagació d’ones en plasmes de càrregues elèctriques davant la presència de camps magnètics externs, constants. Finalment, estudio el frenat elèctric d’un conductor de càrregues magnètiques amb un efecte dual al frenat magnètic en conductors elèctrics.
Resumo:
Through the history of Electrical Engineering education, vectorial and phasorial diagrams have been used as a fundamental learning tool. At present, computational power has replaced them by long data lists, the result of solving equation systems by means of numerical methods. In this sense, diagrams have been shifted to an academic background and although theoretically explained, they are not used in a practical way within specific examples. This fact may be against the understanding of the complex behavior of the electrical power systems by students. This article proposes a modification of the classical Perrine-Baum diagram construction to allowing both a more practical representation and a better understanding of the behavior of a high-voltage electric line under different levels of load. This modification allows, at the same time, the forecast of the obsolescence of this behavior and line’s loading capacity. Complementary, we evaluate the impact of this tool in the learning process showing comparative undergraduate results during three academic years
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
Latin America participated in the electric revolution which profoundly transformed the most developed Western economies between 1880 and 1930. The electrification of Latin America began relatively soon after these economies, but it was incapable of keeping up with them. Public electric lighting was introduced early in the big Latin American cities, where electric trams started running at almost the same time as in Europe, and electricity spread rapidly in the mining sector. In the most advanced countries or areas in the region, the manufacturing industry substituted the steam engine with the electric motor, following the example of industry in the United States and Europe. Nevertheless, towards 1930 electricity consumption per inhabitant for Latin America was far below that of the more advanced economies, and only the Latin American countries which lead the process of electrification had reached levels of electric consumption that were similar to those of the late industrialised European countries. One of the most striking features of the electric revolution in Latin America is rooted precisely in the enormous national differences. These differences are indicative of the great economic inequalities existing in the heart of the region and these nations highly diverse capacity for economic modernisation.
Resumo:
The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.
Resumo:
We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the whole spectral range. The low-energy free-carrier response was well fitted by using the classical Drude-Lorentz dielectric function. A simple two-band model allowed the resulting optical parameters to be interpreted coherently with those previously obtained from transport measurements, hence yielding the densities and the effective masses of electrons and holes.
Resumo:
We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term