25 resultados para Conditional and Unconditional Interval Estimator
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The objective of this paper is to estimate a petrol consumption function for Spain and to evaluate the redistributive effects of petrol taxation. We use micro data from the Spanish Household Budget Survey of 1990/91 and model petrol consumption taking into account the effect that income changes may have on car ownership levels, as well as the differences that exist between expenditure and consumption. Our results show the importance that household structure, place of residence and income have on petrol consumption. We are able to compute income elasticities of petrol expenditure, both conditional and unconditional on the level of car ownership. Non-conditional elasticities, while always very close to unit values, are lower for higher income households and for those living in rural areas or small cities. When car ownership levels are taken into account, conditional elasticities are obtained that are around one half the value of the non- conditional ones, being fairly stable across income categories and city sizes. As regards the redistributive effects of petrol taxation, we observe that for the lowest income deciles the share of petrol expenditure increases with income, and thus the tax can be regarded as progressive. However, after a certain income level the tax proves to be regressive.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
Resumo:
The remarkable decline in macroeconomic volatility experienced by the U.S. economy since the mid-80s (the so-called Great Moderation) has been accompanied by large changes in the patterns of comovements among output, hours and labor productivity. Those changes are reflected in both conditional and unconditional second moments as well as in the impulse responses to identified shocks. That evidencepoints to structural change, as opposed to just good luck, as an explanation for the Great Moderation. We use a simple macro model to suggest some of the immediate sources which are likely to be behindthe observed changes.
Resumo:
(INFINITIVE + CLITIC + AUX) is an evidential configuration in Old Spanish and Old Catalan, whereas (PARTICIPLE + CLITIC + AUX) is an instance of weak or unmarked focus fronting. The evidentiality of mesoclitic structures can be put forward on the bases of three main arguments: a) mesoclisis is not compulsory (i.e., whenever you have a clitic, you can either have mesoclisis or proclisis/enclisis); b) mesoclitic futures and conditionals areattested in interrogative sentences (with wh- elements); and c) they are not found in derived adverbial clauses (which is what you expect if they have an evidential value, since they bring about intervention effects corresponding to the derivational account of conditional and temporal sentences, for example - see Haegeman 2007 and ff.), and are related to high modal expressions (thus interfering with MoodPIrrealis)
Resumo:
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
We derive an international asset pricing model that assumes local investorshave preferences of the type "keeping up with the Joneses." In aninternational setting investors compare their current wealth with that oftheir peers who live in the same country. In the process of inferring thecountry's average wealth, investors incorporate information from the domesticmarket portfolio. In equilibrium, this gives rise to a multifactor CAPMwhere, together with the world market price of risk, there existscountry-speciffic prices of risk associated with deviations from thecountry's average wealth level. The model performs signifficantly better, interms of explaining cross-section of returns, than the international CAPM.Moreover, the results are robust, both for conditional and unconditionaltests, to the inclusion of currency risk, macroeconomic sources of risk andthe Fama and French HML factor.
Resumo:
Children with sickle cell anemia (SCA) are at increased risk of stroke. Elevated blood-flow velocities in the middle cerebral artery detected by Transcranial Doppler (TCD) are a good predictor of stroke risk in these children. Velocities obtained by TCD are measured by using a specific parameter, the time-averaged mean of the maximum velocity (TAMM). Children with TAMM velocities ≥200 cm/sec are at high risk of stroke, and transfusions as primary prevention might be done. Transcranial Doppler-imaging (TCDI) is now widely available and it allows the visualization of intracranial vessels.Few studies have compared the TAMM in TCD and TCDI, and no studies have established a cutoff point for TAMM in TCDI equivalent to the STOP criteria of “normal”, “conditional” and “abnormal”, which could predict a high risk of stroke in children with SCAObjectives: To compare the TAMM velocity obtained by TCDI with the TAMM velocity obtained with TCD in the middle cerebral artery, and to determine a cutoff point for TAMM in TCDI that could predict a high risk of stroke in children with SCAMethods: This study is a cross-sectional study of a diagnostic test. 78 children with sickle cell anemia between 2 to 16 years will be evaluated with both TCD and TCDI in order to determinate the TAMM with the two devices. Velocities obtained with both Doppler techniques will be compared using an intraclass correlation coefficient
Resumo:
This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.
Resumo:
L'Anàlisi de la supervivència s'utilitza en diferents camps per analitzar el temps transcorregut entre dos esdeveniments. El que distingeix l'anàlisi de la supervivència d'altres àrees de l'estadística és que les dades normalment estan censurades. La censura en un interval apareix quan l'esdeveniment final d'interès no és directament observable i només se sap que el temps de fallada està en un interval concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps final estan censurats en un interval. Aquesta situació s'anomena doble censura. En aquest article donem una descripció formal d'un mètode bayesà paramètric per a l'anàlisi de dades censurades en un interval i dades doblement censurades així com unes indicacions clares de la seva utilització o pràctica. La metodologia proposada s'ilustra amb dades d'una cohort de pacients hemofílics que es varen infectar amb el virus VIH a principis dels anys 1980's.
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areasof applications of statistics. For compositional data the necessary theoreticaladaptation has been provided, with illustrative applications, by Aitchison (1990) andAitchison and Greenacre (2002). These papers were restricted to the interpretation ofsimple compositional data sets. In many situations the problem has to be described insome form of conditional modelling. For example, in a clinical trial where interest isin how patients’ steroid metabolite compositions may change as a result of differenttreatment regimes, interest is in relating the compositions after treatment to thecompositions before treatment and the nature of the treatments applied. To study thisthrough a biplot technique requires the development of some form of conditionalcompositional biplot. This is the purpose of this paper. We choose as a motivatingapplication an analysis of the 1992 US President ial Election, where interest may be inhow the three-part composition, the percentage division among the three candidates -Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethniccomposition and on the urban-rural composition of the state. The methodology ofconditional compositional biplots is first developed and a detailed interpretation of the1992 US Presidential Election provided. We use a second application involving theconditional variability of tektite mineral compositions with respect to major oxidecompositions to demonstrate some hazards of simplistic interpretation of biplots.Finally we conjecture on further possible applications of conditional compositionalbiplots