38 resultados para Coastal Vulnerability
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El proyecto “Vulnerabilidad costera a múltiples agentes. Aplicación al litoral Catalán” tiene como objetivo general desarrollar y validar una metodología para evaluar cuantitativamente la vulnerabilidad de las costas sedimentarias a los principales procesos que rigen su comportamiento. Dentro de este contexto y durante un periodo de 6 meses se ha estado trabajando en el principal objetivo parcial del proyecto: el desarrollo de una serie de indicadores de vulnerabilidad costera a procesos físicos, más específicamente en la obtención de un índice de vulnerabilidad costera a temporales. Para ello se ha analizado la variabilidad espacial y temporal de la intensidad de los procesos costeros inducidos por temporales a lo largo de la costa Catalana, teniendo en cuenta únicamente la contribución de las características del oleaje. Se han integrado datos reales y simulados de oleaje de tres sitios distribuidos a lo largo del litoral Catalán para obtener las series temporales de intensidad de los tres procesos costeros derivados de la acción de temporales más relevantes (transporte de sedimentos, erosión e inundación). Los resultados muestran que no existen tendencias significativas en las series temporales de los procesos estudiados. Por otro lado, el análisis de las series de la media móvil de 5 años de las anomalías de dichos procesos refleja tendencias positivas significativas en el transporte de sedimentos y la erosión para las zonas norte y sur de la costa, y en la inundación para la zona sur. En relación a la variabilidad espacial, los resultados muestran que la zona sur es la más vulnerable a los procesos de erosión costera y transporte de sedimentos, mientras que la parte norte es la más vulnerable al proceso de inundación.
Resumo:
This paper investigates vulnerability to poverty in Haiti. Research in vulnerability in developing countries has been scarce due to the high data requirements of vulnerability studies (e.g. panel or long series of cross-sections). The methodology adopted here allows the assessment of vulnerability to poverty by exploiting the short panel structure of nested data at different levels. The decomposition method reveals that vulnerability in Haiti is largely a rural phenomenon and that schooling correlates negatively with vulnerability. Most importantly, among the different shocks affecting household's income, it is found that meso-level shocks are in general far more important than covariate shocks. This finding points to some interesting policy implications in decentralizing policies to alleviate vulnerability to poverty.
Resumo:
In this project I have carried out a vulnerability assessment of a component of the Condor Middleware. In this assessment I have sought and found the more dangerous software vulnerabilities of this system, I have reported them to the development team such that they may be fixed, and thus improve the security of this distributed system, and the networks that use it.
Resumo:
Many of the veins enclosed within the Paleozoic basement of the Catalonian Coastal Ranges show severa1 common characteristics: low temperature of formation (between 75 and 200C), the presence of complex polisaline fluids and a certain relationship to the pretriassic paleosurface. Mineralogical composition and age are variable, ranging from Pb-Zn veins with carbonate gangue of late Hercynian age through metal poor fluorite rich veins to barite rich veins of Triasssic age. Mineralizing fluids are not related to late Hercynianmagmatism and deposition took place in active fractures developed either in extensional as in compressive regimes.
Resumo:
Many mineralizations, showings and geochemical anomalies have been found in the Hercynian of the Catalonian Coastal Ranges during the last ten years. Many of them are enclosed in the Paleozoic sediments and volcanics and display pre-metamorphic syngenetic characteristics. The lower carboniferous manganese and base meta1 deposits appear to be formed from hydrothermal fluids springing up in the sea floor through active fractures controlling the filling of the basins in a extensional geotectonic setting. Although less evidence and more controversy is available, similar ore forming processes could have taken place in older Paleozoic times. The deformation and metamorphism have not played an important remobilization role, and most epigenetic deposits of Hercynian age are related to the hydrothermal cells induced by the post-metamorphic granitic intrusives.
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.
Resumo:
Coastal lagoons where salinity varies within a wide range during the year are colonized by euryhaline macrophytes which can develop extensive beds. Seasonal changes in biomass of Ruppia cirrhosa and Potamogeton pectinatus were studied in Tancada Lagoon (Ebro Delta, NE Spain) in order to reveal the environmental factors controlling their population development. Ruppia cirrhosa occupy a larger area of the lagoon than Potarnogeton pectinatus. Their maximum above ground biomasses are also different (495 g m-2 and 351 g m-2 ash free dry weight, respectively). Below ground biomass of Ruppia cirrhosa is between 9 and 53 % of the above ground biomass, while it is 3-40 % for Potamogeton pectinatus. Chlorophyll a contents show fluctuations similar to biomass. Low salinity and high turbidity caused by freshwater inflows favour Potamogeton expansion, while Ruppia development is favoured by high salinity and transparent water.
Resumo:
The decomposition process of Ruppia cirrhosa was studied in a Mediterranean coastal lagoon in the Delta of the River Ebro (NE Spain). Leaves and shoots of Ruppia were enclosed in 1 mm-mesh and 100 pm-mesh litter bags to ascertain the effect of detritivores, macroinvertebrates, and bacteria and fungi, respectively. Changes in biomass and carbon, and, nitrogen and phosphorus concentrations in the detritus were studied at the sediment-water interface and in the sediment. Significant differences in biomass decay were observed between the two bag types. Significant differences in decomposition were observed between the two experimental conditions studied using 100 pm-mesh bags. These differences were not significant when using the 1 mm-mesh bags. The carbon content in the detritus remained constant during the decomposition process. The percentage of nitrogen increased progressively from an initial 2.4 % to 3 %. The percentage of phosphorus decreased rapidly during the first two days of decomposition from an initial 0.26 % to 0.17 %. This loss is greater in the sediment than in the water column or at the sediment-water interface. From these results we deduce that the activity of microorganisms seems to be more important in the sediment than in the water-sediment interface, and that grazing by macroinvertebrates has less importance in the sediment than in the water column.
Resumo:
This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
In an era of increasing concern for limited water resources a wise joint management of conventional and nonconventional water resources must be considered. Water scarcity aggravates in coastal zones which are often characterised by high population density, intense economic activity and tourism; meaning heavy seasonal water demands. The relationships between sea and land-water can also compromise the quality of available freshwater. In this context, the use of non-conventional water increases the availability of water supplies. Non-conventional water resources of low quality could be directed to meet several needs (like watering lawns, washing cars, flushing toilets and cooling systems, among others). Therefore, significantly more potable water would be available to meet human demand for safe water.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.
Resumo:
The evaporite unit (the Lécera Formation), which was formed at the Triassic¿Liassic boundary in the Aragonian Branch of the Iberian Chain, was studied at the 01 Alacón borehole (Alacón village, Teruel province), where it is mainly constituted by a thick (>e and reflect deeper water settings, whereas in the upper part they correspond to shallower water settings. The evaporite sedimentation mainly occurred in a subsiding coastal basin of the salina or lagoon type. In this setting, the subaqueous precipitation of the carbonate and gypsum lithofacies was followed, in each cycle, by the interstitial growth of anhydrite in exposed conditions. As a whole, the evaporite succession reflects an infilling process. The conversion into anhydrite of the selenitic gypsum -probably also of the rest of depositional gypsum lithofaciesstarted under synsedimentary conditions and followed during shallow to moderate burial diagenesis.