31 resultados para Chromosomes.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Asteraceae or Compositae constitute one of the largest families of the angiosperms, distributed over all continents but in Antarctica, particularly well represented in temperate zones and less frequent in tropical regions. The Asteraceae have been the object of a great deal of attention from all viewpoints for their scientific as well as economic interest. Telomeres sequences are highly conservated at the ends of chromosomes across the eukaryotes. In plants, generally are formed by tandemly repeated sequences named Arabidopsis type but several exceptions have been described. The objective of the present work is to study the telomeric characterization along the whole Asteraceae family and to find, if any, the relationships between these results and the evolutionary history in this family.
Resumo:
Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells isone of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenoncontributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora ofdifferent transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify thedifferent types of reflected splicing variation. In this work, we present a general definition of the AS event along with anotation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assignsa specific ‘‘AS code’’ to every possible pattern of splicing variation. On the basis of this definition and the correspondingcodes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of ASevents in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversityacross genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—ofthe observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate andto compare the AS landscape of different reference annotation sets in human and in other metazoan species and found thatproportions of AS events change substantially depending on the annotation protocol, species-specific attributes, andcoding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conductspecific studies investigating the occurrence, impact, and regulation of AS.
Resumo:
Background: Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results: Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion:This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients.
Resumo:
It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape-human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
Background: The RPS4 gene codifies for ribosomal protein S4, a very well-conserved protein present in all kingdoms. In primates, RPS4 is codified by two functional genes located on both sex chromosomes: the RPS4X and RPS4Y genes. In humans, RPS4Y is duplicated and the Y chromosome therefore carries a third functional paralog: RPS4Y2, which presents a testis-specific expression pattern. Results: DNA sequence analysis of the intronic and cDNA regions of RPS4Y genes from species covering the entire primate phylogeny showed that the duplication event leading to the second Y-linked copy occurred after the divergence of New World monkeys, about 35 million years ago. Maximum likelihood analyses of the synonymous and non-synonymous substitutions revealed that positive selection was acting on RPS4Y2 gene in the human lineage, which represents the first evidence of positive selection on a ribosomal protein gene. Putative positive amino acid replacements affected the three domains of the protein: one of these changes is located in the KOW protein domain and affects the unique invariable position of this motif, and might thus have a dramatic effect on the protein function.Conclusion: Here, we shed new light on the evolutionary history of RPS4Y gene family, especially on that of RPS4Y2. The results point that the RPS4Y1 gene might be maintained to compensate gene dosage between sexes, while RPS4Y2 might have acquired a new function, at least in the lineage leading to humans.
Resumo:
Abstract In this study, chromosomal inversion polymorphism data for a natural population of Drosophila subobscura from a swampy region near the town of Apatin (Serbia) were compared with data for the same population collected approximately 15 years earlier. The pattern of chromosomal inversion polymorphism changed over time. There were significant increases in the frequency of characteristic southern latitude ("warm" adapted) chromosomal arrangements and significant decreases in the frequency of characteristic northern latitude ("cold" adapted) chromosomal arrangements in the O and U chromosomes. The chromosomal arrangements O3+4 and O3+4+22 (derived from the O3+4 arrangement)showed significant increases in 2008 and 2009 with regard to the 1994 sample. There was also a significant increase (~50%) in the U1+2 arrangement, while U1+8+2 (a typical southern arrangement) was detected for the first time. Since the Apatin swampy population ofD. subobscura has existed for a long time in a stable habitat with high humidity that has not been changed by man our results indicate that natural selection has produced chromosomal changes in response to the increase in temperature that has occurred in the Balkan Peninsula of central southeastern European. Key words: chromosomal inversions, Drosophila subobscura, global warming, karyotypes.
Resumo:
Abstract The recent colonization of America by Drosophila subobscura represents a great opportunity for evolutionary biology studies. Knowledge of the populations from which the colonization started would provide an understanding of how genetic composition changed during adaptation to the new environment. Thus, a 793 nucleotide fragment of the Odh (Octanol dehydrogenase) gene was sequenced in 66 chromosomal lines from Barcelona (western Mediterranean) and in 66 from Mt. Parnes (Greece, eastern Mediterranean). No sequence of Odh fragment in Barcelona or Mt. Parnes was identical to any of those previously detected in America. However, an Odh sequence from Barcelona differed in only one nucleotide from another found in American populations. In both cases, the chromosomal lines presented the same inversion: O7, and the Odh gene was located within this inversion. This evidence suggests a possible western Mediterranean origin for the colonization. Finally, the molecular and inversion data indicate that the colonization was not characterized by multiple reintroductions.
Resumo:
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Resumo:
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.
Resumo:
Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4).Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.
Resumo:
Dysploidy and polyploidy are well documented in the large genus Centaurea, especially in sect. Acrocentron and in a small group of species from the Iberian Peninsula described as sect. Chamaecyanus, closely related to Acrocentron. We have explored two interesting cases of polyploid series in both sections: the polyploid series of Centaurea toletana in sect. Chamaecyanus and the series of C. ornata group in sect. Acrocentron. We have carried out a karyological study using both classic karyotype analyses and chromosome banding with fluorochromes.
Resumo:
The chromosomal inversion polymorphism of Drosophila subobscura is adaptive to environmental changes. The population of Petnica, Serbia, was chosen to analyze short- and long-term changes in this polymorphism. Short-term changes were studied in the samples collected in May, June, and August of 1995. The inversion polymorphism varied over these months, although various interpretations are possible. To analyze long-term changes, samples obtained in May 1995 and May 2010 were compared. The frequency of the 'cold' adapted inversions (Ast, Jst, Ust, Est, and Ost) decreased and that of the 'warm' adapted inversions (A2, J1, U1+2, and O3+4) increased, from 1995 to 2010. These changes are consistent with the general increase in temperature recorded in Petnica for the same period. Finally, the possible response of chromosomal polymorphism to global warming was analyzed at the regional level (Balkan peninsula). This polymorphism depends on the ecological conditions of the populations, and the changes observed appear to be consistent with global warming expectations. Natural selection seems to be the main mechanism responsible for the evolution of this chromosomal polymorphism.
Resumo:
The chromosomal inversion polymorphism of Drosophila subobscura is adaptive to environmental changes. The population of Petnica, Serbia, was chosen to analyze short- and long-term changes in this polymorphism. Short-term changes were studied in the samples collected in May, June, and August of 1995. The inversion polymorphism varied over these months, although various interpretations are possible. To analyze long-term changes, samples obtained in May 1995 and May 2010 were compared. The frequency of the 'cold' adapted inversions (Ast, Jst, Ust, Est, and Ost) decreased and that of the 'warm' adapted inversions (A2, J1, U1+2, and O3+4) increased, from 1995 to 2010. These changes are consistent with the general increase in temperature recorded in Petnica for the same period. Finally, the possible response of chromosomal polymorphism to global warming was analyzed at the regional level (Balkan peninsula). This polymorphism depends on the ecological conditions of the populations, and the changes observed appear to be consistent with global warming expectations. Natural selection seems to be the main mechanism responsible for the evolution of this chromosomal polymorphism.
Resumo:
Chromosomal anomalies, like Robertsonian and reciprocal translocations represent a big problem in cattle breeding as their presence induces, in the carrier subjects, a well documented fertility reduction. In cattle reciprocal translocations (RCPs, a chromosome abnormality caused by an exchange of material between nonhomologous chromosomes) are considered rare as to date only 19 reciprocal translocations have been described. In cattle it is common knowledge that the Robertsonian translocations represent the most common cytogenetic anomalies, and this is probably due to the existence of the endemic 1;29 Robertsonian translocation. However, these considerations are based on data obtained using techniques that are unable to identify all reciprocal translocations and thus their frequency is clearly underestimated. The purpose of this work is to provide a first realistic estimate of the impact of RCPs in the cattle population studied, trying to eliminate the factors which have caused an underestimation of their frequency so far. We performed this work using a mathematical as well as a simulation approach and, as biological data, we considered the cytogenetic results obtained in the last 15 years. The results obtained show that only 16% of reciprocal translocations can be detected using simple Giemsa techniques and consequently they could be present in no less than 0,14% of cattle subjects, a frequency five times higher than that shown by de novo Robertsonian translocations. This data is useful to open a debate about the need to introduce a more efficient method to identify RCP in cattle.