2 resultados para Chondroitin sulphatase

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placental malaria is a special form of malaria that causes up to 200,000 maternal and infant deaths every year. Previous studies show that two receptor molecules, hyaluronic acid and chondroitin sulphate A, are mediating the adhesion of parasite-infected erythrocytes in the placenta of patients, which is believed to be a key step in the pathogenesis of the disease. In this study, we aimed at identifying sites of malaria-induced adaptation by scanning for signatures of natural selection in 24 genes in the complete biosynthesis pathway of these two receptor molecules. We analyzed a total of 24 Mb of publicly available polymorphism data from the International HapMap project for three human populations with European, Asian and African ancestry, with the African population from a region of presently and historically high malaria prevalence. Using the methods based on allele frequency distributions, genetic differentiation between populations, and on long-range haplotype structure, we found only limited evidence for malaria-induced genetic adaptation in this set of genes in the African population; however, we identified one candidate gene with clear evidence of selection in the Asian population. Although historical exposure to malaria in this population cannot be ruled out, we speculate that it might be caused by other pathogens, as there is growing evidence that these molecules are important receptors in a variety of host-pathogen interactions. We propose to use the present methods in a systematic way to help identify candidate regions under positive selection as a consequence of malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.