4 resultados para Chironomids

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drift has recived considerable attention in recent times as a method to collect chironomid pupal exuviae (COFFMAN, 1973; LAVILLE, 1979, 1981) for taxonomie as well as water pollution studies (WILSON, 1977).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new, quantitative, inference model for environmental reconstruction (transfer function), based for the first time on the simultaneous analysis of multigroup species, has been developed. Quantitative reconstructions based on palaeoecological transfer functions provide a powerful tool for addressing questions of environmental change in a wide range of environments, from oceans to mountain lakes, and over a range of timescales, from decades to millions of years. Much progress has been made in the development of inferences based on multiple proxies but usually these have been considered separately, and the different numeric reconstructions compared and reconciled post-hoc. This paper presents a new method to combine information from multiple biological groups at the reconstruction stage. The aim of the multigroup work was to test the potential of the new approach to making improved inferences of past environmental change by improving upon current reconstruction methodologies. The taxonomic groups analysed include diatoms, chironomids and chrysophyte cysts. We test the new methodology using two cold-environment training-sets, namely mountain lakes from the Pyrenees and the Alps. The use of multiple groups, as opposed to single groupings, was only found to increase the reconstruction skill slightly, as measured by the root mean square error of prediction (leave-one-out cross-validation), in the case of alkalinity, dissolved inorganic carbon and altitude (a surrogate for air-temperature), but not for pH or dissolved CO2. Reasons why the improvement was less than might have been anticipated are discussed. These can include the different life-forms, environmental responses and reaction times of the groups under study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A summary of the results from the study of benthos of lakes and reservoirs in Spain is provided, with a list of the species found to date. Spanish natural lakes are smaller than European lakes; the largest is Lake Sanabria, of glacial origin, which is 3 Km long and half a kilorneter wide. Many are very small and situated in the mountains; more than 200 hundred have been recorded in Spain, but only in Lake Sanabria and Lake Banyoles have the benthos been studied. Lake Sanabria is a cold oligotrophic, monomictic lake with oxygen always present in the deepest zones. Its fauna is similar to that of other central European lakes, with Mici.opsectra c.orztractu (a chironomid) as the dominan1 species. Lake Banyoles is a karstic, monomictic and multibasin lake; despite the low primary productivity, due to the abundante of sulphate in the water, the allochthonous inflow of organic matter and the inflow of water from bottom springs, the profunda1 environinent is very stressing for benthic fauna. Very low oxygen concentrations and high sulphide content in the water and sediments dueto meromixis mean that only the larva of the dipteran Chaohoi.lcs flai7icans was present in one of the 5 basins of the lake. In other basins, when oxygen is available (no meromixis), the fauna is similar to that of tlie inineralized lakes of the Aegean region and some lakes in central Italia. On the other hand, preliminary data from the Pyrenean lakes and from Sierra Nevada ponds reveal no differences with northern cold lakes. Tlie largest lakes in Spain are the reservoirs. There are nearly 1000 and data are available on 100 of them, including the kargest. In addition to oxygen and sulphide content in the bottom waters, water level fluctuation and high sedimentation rates are disturbance factors that prevented the organization of the community. Allochthonous inputs of organic matter are also an important factor both in the reservoirs and also in the small, oligotrophic lakes like Banyoles and Sanabria. As a result the meiofaunal loop is very important in many of the Spanish water bodies . For this reason the natural lakes and reservoirs of Spain are dominated by Oligochaeta, small crustaceans and the microcarnivore chironomids (such as Procladi~ls, Cladopelma and Mi(,rnc.hil-onnmus) that feed on these meoifaunal elements. The phytophagous chironomids, like Chironomus, are only abundan1 in the shallow areas of mesotrophic and eutrophic reservoirs. This situation makes it difficult to apply the typological system of SAETHER which predicts with some confidence only the benthic communities of Spanish natural lakes above 1500 m in the Pyrenees or the ponds above 2000 m in Sierra Nevada mountains. Higher temperatures (which originate a longer stratification period), the presence of sulphate in the waters of the eastern part of Spain and high inputs of sediments and allochthonous organic matter seem to be the factors that originated the differences between the benthic profunda1 faunas of Spanish lakes and reservoirs and those of the temperate lakes of north and central Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroinvertebrates associated to reed-beds (Phragmites australis) in six shallow natural water bodies along the 220 km of coast of the Comunidad Valenciana (Spain) were studied. These sites were selected to reflect different trophic states, but also, and due to the natural variability of mediterranean wetlands, they greatly differ in salinity and hydroperiod. To unify the sampling, reed bed was chosen to provide data from a habitat common to all wetlands, including the most eutrophic ones where submerged macrophytes have disappeared due to water turbidity. Individual submerged stems of Phragmites australis were sampled along with the surrounding water. The animal density found refers to the available stem surface area for colonization. Forty-one taxa were recorded in total, finding Chironomidae to be the most important group, quantitatively and qualitatively. In freshwater sites it was observed an increase in macroinvertebrate"s density at higher trophic states. Nevertheless each studied region had a different fauna. The PCA analysis with macroinvertebrate groups distinguished three types of environment: freshwaters (characterized by swimming insect larvae, collectors and predators, oligochaetes and Orthocladiinae), saline waters (characterized by crustaceans and Chironominae) and the spring pool, which shares both taxa. Chironomids were paid special attention for being the most abundant. A DCA analysis based on the relative abundance of Chironomids reveals salinity as the main characteristic responsible for its distribution, but trophic state and hydrological regime were also shown to be important factors.