12 resultados para Chi-square test
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.
Resumo:
La intenció d'aquest article és detallar l'abast del capital social als esdeveniments culturals celebrats a Catalunya i analitzar la influència sobre l'atracció turística dels mateixos. Es pretén determinar també quin és l'impacte que tres elements de capital social que intervenen en l'organització d'esdeveniments (elements de motivació, creació de xarxes internes i lideratge) tenen sobre el sector turístic local. L'estudi parteix d'una mostra de 263 esdeveniments als quals s'ha adreçat una enquesta per determinar la presència i pes dels factors de capital social. Aquesta informació s'ha creuat amb dades sobre impactes i atracció turística obtingudes també a partir de la mateixa enquesta i, a partir de l'aplicació del test del chi quadrat, s'ha contrastat si les diferències existents entre els diferents factors del capital social són estadísticament significatives. Les conclusions principals obtingudes indiquen que els esdeveniments que tenen elements de capital social que els reforça la seva cohesió social entenen i justifiquen la celebració com a fet socialitzador, independentment del seu abast turístic. A més es detecta que la creació de xarxes de relació enforteix la cohesió interna, la representativitat i el sentit d'identitat de la comunitat. Finalment es constata que la presència d'elements de lideratge que donen visibilitat i vinculen l'esdeveniment amb xarxes externes explica la diferència existent en la capacitat d'atracció i impactes turístics dels esdeveniments. La principal aportació del treball és posar de manifest el paper del capital social com a factor que incideix en la repercussió social i turística dels esdeveniments catalans. La diagnosi efectuada permet recomanar la incorporació del capital social com un actiu estratègic per a la gestió i per a la creació de nous productes i polítiques turístiques centrades en els esdeveniments culturals.
Resumo:
In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series
Resumo:
In this paper we deal with the identification of dependencies between time series of equity returns. Marginal distribution functions are assumed to be known, and a bivariate chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas are fitted and compared with Spanish stock market data. The results show that the t-copula generally outperforms other dependence structures, and highlight the difficulty in adjusting a significant number of bivariate data series
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
En este documento se realiza una descripción de los trastornos de identidad de género (TIG) y de su situación a nivel nacional e internacional, teniendo en cuenta la legislación y epidemiología, con el objetivo de consolidar así una base teórica para el estudio. Se diferencian también otras patologías similares para evitar confusión o errores. Se propone un estudio cuantitativo, observacional, transversal, descriptivo y correlacional que tiene como objetivos principales evaluar los conocimientos, habilidades y actitudes necesarios del personal de enfermería para el cuidado de las personas con TIG y comparar las competencias de la enfermería de distintos niveles asistenciales. Como método de recogida de datos se utiliza un cuestionario de elaboración propia, de preguntas cerradas con múltiples opciones de respuesta. El análisis de los datos será inferencial y descriptivo, ya que el objetivo es realizar una estimación a partir de los resultados obtenidos de la muestra sobre el conjunto total de la población con la finalidad de realizar el contraste de la hipótesis formulada; para ello, se realizará la prueba no paramétrica de Chi-‐ cuadrado.
Resumo:
Objective: A comparative study is made of the histological effects of silver amalgam versus compomer (Dyract®) 90 days after placement as retrograde filling materials in experimental animals. Method: Six Beagle dogs were used, with total pulpectomy and orthograde material filling followed by periapical surgery of the 6 upper and 6 lower incisors (for a total of 72 teeth). Thirty-six teeth corresponded to the right side and were filled with the control material (silver amalgam), while the 36 teeth on the left side were filled with the compomer study material (Dyract®). After three months the animals were sacrificed and the histological study was carried out, with evaluation of bone formation, inflammation, and the tissue in contact with the filler material. The results obtained were subjected to a descriptive and comparative statistical analysis (chi-square test). Results: The samples retrogradely filled with compomer showed significantly greater percentage inflammation (76.19% versus 26.66% in the control group). On the other hand, a large proportion of samples with root cement growth were found in the compomer group. Filler material expulsion was also significantly more common when compomer was used. Conclusions: the comparative study of the histological findings showed greater inflammation but also greater root cement growth in the compomer group versus the controls
Resumo:
The general objective of the study was to empirically test a reciprocal model of job satisfaction and life satisfaction while controlling for some social demographic variables. 827 employees working in 34 car dealerships in Northern Quebec (56% responses rate) were surveyed. The multiple item questionnaires were analysed using correlation analysis, chi square and ANOVAs. Results show interesting patterns emerging for the relationships between job and life satisfaction of which 49.2% of all individuals have spillover, 43.5% compensation, and 7.3% segmentation type of relationships. Results, nonetheless, are far richer and the model becomes much more refined when social demographic indicators are taken into account. Globally, social demographic variables demonstrate some effects on each satisfaction individually but also on the interrelation (nature of the relations) between life and work satisfaction.
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
Although correspondence analysis is now widely available in statistical software packages and applied in a variety of contexts, notably the social and environmental sciences, there are still some misconceptions about this method as well as unresolved issues which remain controversial to this day. In this paper we hope to settle these matters, namely (i) the way CA measures variance in a two-way table and how to compare variances between tables of different sizes, (ii) the influence, or rather lack of influence, of outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps,(iv) whether or not to rotate a solution, and (v) statistical significance of results.
Resumo:
Panel data can be arranged into a matrix in two ways, called 'long' and 'wide' formats (LFand WF). The two formats suggest two alternative model approaches for analyzing paneldata: (i) univariate regression with varying intercept; and (ii) multivariate regression withlatent variables (a particular case of structural equation model, SEM). The present papercompares the two approaches showing in which circumstances they yield equivalent?insome cases, even numerically equal?results. We show that the univariate approach givesresults equivalent to the multivariate approach when restrictions of time invariance (inthe paper, the TI assumption) are imposed on the parameters of the multivariate model.It is shown that the restrictions implicit in the univariate approach can be assessed bychi-square difference testing of two nested multivariate models. In addition, commontests encountered in the econometric analysis of panel data, such as the Hausman test, areshown to have an equivalent representation as chi-square difference tests. Commonalitiesand differences between the univariate and multivariate approaches are illustrated usingan empirical panel data set of firms' profitability as well as a simulated panel data.