119 resultados para Chebotarev density theorem

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of subcentres cannot be captured by an exponential function. Cubic spline functions seem more appropriate to depict the polycentricity pattern of modern urban systems. Using data from Barcelona Metropolitan Region, two possible population subcentre delimitation procedures are discussed. One, taking an estimated derivative equal to zero, the other, a density gradient equal to zero. It is argued that, in using a cubic spline function, a delimitation strategy based on derivatives is more appropriate than one based on gradients because the estimated density can be negative in sections with very low densities and few observations, leading to sudden changes in estimated gradients. It is also argued that using as a criteria for subcentre delimitation a second derivative with value zero allow us to capture a more restricted subcentre area than using as a criteria a first derivative zero. This methodology can also be used for intermediate ring delimitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in October 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the proof of a classical localization theorem of Bousfield and Friedlander and we remove the assumption that the underlying model category be right proper. The key to the argument is a lemma about factoring in morphisms in the arrow category of a model category.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit without incurring in any a-priori definition of territorial units. We are also providing an empirical application of our theoretical setting to study the density distribution of the population across Massachusetts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study conformal deformations of a uniform space that satisfies the Ahlfors Q-regularity condition on balls of Whitney type. We verify the Gehring–Hayman Theorem by using a Whitney Covering of the space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the singular Bott-Chern classes introduced by Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main ingredient to define direct images for closed immersions in arithmetic K-theory. In this paper we give an axiomatic definition of a theory of singular Bott-Chern classes, study their properties, and classify all possible theories of this kind. We identify the theory defined by Bismut, Gillet and Soulé as the only one that satisfies the additional condition of being homogeneous. We include a proof of the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions that generalizes a result of Bismut, Gillet and Soulé and was already proved by Zha. This result can be combined with the arithmetic Grothendieck-Riemann-Roch theorem for submersions to extend this theorem to arbitrary projective morphisms. As a byproduct of this study we obtain two results of independent interest. First, we prove a Poincaré lemma for the complex of currents with fixed wave front set, and second we prove that certain direct images of Bott-Chern classes are closed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.