5 resultados para Chagas in dogs
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Projecte de recerca elaborat a partir d’una estada al Department of Biological Science a la University of Lincoln, a la Gran Bretanya, entre octubre i desembre del 2006. L'objectiu del present assaig va ser desciure les respostes antioxidants d'estrès en gossos sotmesos a cirurgia electiva, en condicions de pràctica clínica normals, durant les fases de preoperatori i postoperatori.Setze gossos van ser sotmesos a orquiectomia o ovariohisterectomia electives, utilitzant un protocol quirúrgic estàndard. Durant les fases preoperatoria i postoperatoria, cada animal va ser confinat a la Unitat de Cures Intensives, temps durant el qual es va estudiar la seva resposta antioxidant. Els valors obtinguts a diferents temps van ser comparats amb el valor basal, que s'havia obtingut del mateix animal estant aquest en el seu ambient habitual. No es van detectar variacions significants causades per l'estrès perioperatori. Els valors màxims es van observar durant la fase preoperatoria, just després que l'animal fós confinat a la Unitat de Cures Intensives, moment en el que l'estrès percebut era degut a les amenaces psicològiques de una àrea restringida i de la manipulació per persones desonegudes. L'abscència de variacions significants podrien ser degudes al sistema i el temps d'emmagatzement de les mostres. En humana s'han descrit les alteracions en l'activitat dels antioxidants sèrics després d'un mes d'emmagatzematent. Per definir l'estabilitat, després de la recollida de mostres, de l'activitat dels antioxidants en sèrum de gos és necessari realitzar més estudis.
Resumo:
Background: Non-invasive monitoring of respiratory muscle function is an area of increasing research interest, resulting in the appearance of new monitoring devices, one of these being piezoelectric contact sensors. The present study was designed to test whether the use of piezoelectric contact (non-invasive) sensors could be useful in respiratory monitoring, in particular in measuring the timing of diaphragmatic contraction.Methods: Experiments were performed in an animal model: three pentobarbital anesthetized mongrel dogs. The motion of the thoracic cage was acquired by means of a piezoelectric contact sensor placed on the costal wall. This signal is compared with direct measurements of the diaphragmatic muscle length, made by sonomicrometry. Furthermore, to assess the diaphragmatic function other respiratory signals were acquired: respiratory airflow and transdiaphragmatic pressure. Diaphragm contraction time was estimated with these four signals. Using diaphragm length signal as reference, contraction times estimated with the other three signals were compared with the contraction time estimated with diaphragm length signal.Results: The contraction time estimated with the TM signal tends to give a reading 0.06 seconds lower than the measure made with the DL signal (-0.21 and 0.00 for FL and DP signals, respectively), with a standard deviation of 0.05 seconds (0.08 and 0.06 for FL and DP signals, respectively). Correlation coefficients indicated a close link between time contraction estimated with TM signal and contraction time estimated with DL signal (a Pearson correlation coefficient of 0.98, a reliability coefficient of 0.95, a slope of 1.01 and a Spearman's rank-order coefficient of 0.98). In general, correlation coefficients and mean and standard deviation of the difference were better in the inspiratory load respiratory test than in spontaneous ventilation tests.Conclusion: The technique presented in this work provides a non-invasive method to assess the timing of diaphragmatic contraction in canines, using a piezoelectric contact sensor placed on the costal wall.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 02, 26, 68 and 824 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·11·9), 0·1 (range 00·4), 0·8 (range 0·23·9), 0·2 (range 0·1 1·7) and 1 (range 0·33·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 1021185) mmol/l £ min for EGC-glucuronide, 112 (range 53919) mmol/l £ min for EC-sulphate, 71 (range 26306) mmol/l £ min for EGCG, 40 (range 12258) mmol/l £ min for EC-glucuronide and 14 (range 0·1124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 216), 2 (range 111), 10 (range 213), 3 (range 216) and 2·4 (range 118) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.