25 resultados para COMPLEX STRUCTURE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.
Resumo:
The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.
Resumo:
Recent experiments of H2 adsorption on Pd(111) [T. Mitsui et al., Nature (London) 422, 705 (2003)] have questioned the classical Langmuir picture of second order adsorption kinetics at high surface coverage requiring pairs of empty sites for the dissociative chemisorption. Experiments find that at least three empty sites are needed. Through density functional theory, we find that H2 dissociation is favored on ensembles of sites that involve a Pd atom with no direct interaction with adsorbed hydrogen. Such active sites are formed by aggregation of at least 3 H-free sites revealing the complex structure of the "active sites."
Resumo:
We investigated the effect of benthic substratum type (sand and rocks) and nutrient supply (N and P) on biofilm structure and heterotrophic metabolism in a field experiment in a forested Mediterranean stream (Fuirosos). Rock and sand colonization and biofilm formation was intensively studied for 44 d at two stream reaches: control and experimental (continuous addition of phosphate, ammonia, and nitrate). Structural (C, N, and polysaccharide content and bacterial and chlorophyll density) and metabolic biofilm parameters (b-glucosidase, peptidase, and phosphatase enzyme activities) were analyzed throughout the colonization process. The epilithic biofilm (grown on rocks) had a higher peptidase activity at the impacted reach, together with a higher algal and bacterial biomass. The positive relationship between the peptidase activity per cell and the N content of the epilithic biofilm suggested that heterotrophic utilization of proteinaceous compounds from within the biofilm was occurring. In contrast, nutrient addition caused the epipsammic biofilm (grown on sand) to exhibit lower b-glucosidase and phosphatase activities, without a significant increase in bacterial and algal biomass. The differential response to nutrient addition was related to different structural characteristics within each biofilm. The epipsammic biofilm had a constant and high C:N ratio (22.7) throughout the colonization. The epilithic biofilm had a higher C:N ratio at the beginning of the colonization (43.2) and evolved toward a more complex structure (high polysaccharide content and low C:N ratio) during later stages. The epipsammic biofilm was a site for the accumulation and degradation of organic matter: polysaccharides and organic phosphorus compounds had higher degradation activities
Resumo:
Report for the scientific sojourn carried out at the Institut de Biologia Molecular de Barcelona of the CSIC –state agency – from april until september 2007. Topoisomerase I is an essential nuclear enzyme that modulates the topological status of DNA, facilitating DNA helix unwinding during replication and transcription. We have prepared the oligonucleotide-peptide conjugate Ac-NLeu-Asn-Tyr(p-3’TTCAGAAGC5’)-LeuC-CONH-(CH2)6-OH as model compound for NMR studies of the Topoisomerase I- DNA complex. Special attention was made on the synthetic aspects for the preparation of this challenging compound especially solid supports and protecting groups. The desired peptide was obtained although we did not achieve the amount of the conjugate needed for NMR studies. Most probably the low yield is due to the intrinsic sensitive to hydrolysis of the phosphate bond between oligonucleotide and tyrosine. We have started the synthesis and the structural characterization of oligonucleotides carrying intercalating compounds. At the present state we have obtained model duplex and quadruplex sequences modified with acridine and NMR studies are underway. In addition to this project we have successfully resolved the structure of a fusion peptide derived from hepatitis C virus envelope synthesized by the group of Dr. Haro and we have synthesized and started the characterization of a modified G-quadruplex.
Resumo:
We prove rigidity and vanishing theorems for several holomorphic Euler characteristics on complex contact manifolds admitting holomorphic circle actions preserving the contact structure. Such vanishings are reminiscent of those of LeBrun and Salamon on Fano contact manifolds but under a symmetry assumption instead of a curvature condition.
Resumo:
Report for the scientific sojourn at the University of Reading, United Kingdom, from January until May 2008. The main objectives have been firstly to infer population structure and parameters in demographic models using a total of 13 microsatellite loci for genotyping approximately 30 individuals per population in 10 Palinurus elephas populations both from Mediterranean and Atlantic waters. Secondly, developing statistical methods to identify discrepant loci, possibly under selection and implement those methods using the R software environment. It is important to consider that the calculation of the probability distribution of the demographic and mutational parameters for a full genetic data set is numerically difficult for complex demographic history (Stephens 2003). The Approximate Bayesian Computation (ABC), based on summary statistics to infer posterior distributions of variable parameters without explicit likelihood calculations, can surmount this difficulty. This would allow to gather information on different demographic prior values (i.e. effective population sizes, migration rate, microsatellite mutation rate, mutational processes) and assay the sensitivity of inferences to demographic priors by assuming different priors.
Resumo:
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.
Resumo:
This paper presents a two--factor model of the term structure ofinterest rates. We assume that default free discount bond prices aredetermined by the time to maturity and two factors, the long--term interestrate and the spread (difference between the long--term rate and theshort--term (instantaneous) riskless rate). Assuming that both factorsfollow a joint Ornstein--Uhlenbeck process, a general bond pricing equationis derived. We obtain a closed--form expression for bond prices andexamine its implications for the term structure of interest rates. We alsoderive a closed--form solution for interest rate derivatives prices. Thisexpression is applied to price European options on discount bonds andmore complex types of options. Finally, empirical evidence of the model'sperformance is presented.
Resumo:
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
Resumo:
The recently measured inclusive electron-proton cross section in the nucleon resonance region, performed with the CLAS detector at the Thomas Jefferson Laboratory, has provided new data for the nucleon structure function F2 with previously unavailable precision. In this paper we propose a description of these experimental data based on a Regge-dual model for F2. The basic inputs in the model are nonlinear complex Regge trajectories producing both isobar resonances and a smooth background. The model is tested against the experimental data, and the Q2 dependence of the moments is calculated. The fitted model for the structure function (inclusive cross section) is a limiting case of the more general scattering amplitude equally applicable to deeply virtual Compton scattering. The connection between the two is discussed.
Resumo:
The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
The observation that real complex networks have internal structure has important implication for dynamic processes occurring on such topologies. Here we investigate the impact of community structure on a model of information transfer able to deal with both search and congestion simultaneously. We show that networks with fuzzy community structure are more efficient in terms of packet delivery than those with pronounced community structure. We also propose an alternative packet routing algorithm which takes advantage of the knowledge of communities to improve information transfer and show that in the context of the model an intermediate level of community structure is optimal. Finally, we show that in a hierarchical network setting, providing knowledge of communities at the level of highest modularity will improve network capacity by the largest amount.