11 resultados para CB1
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
L'objectiu d'aquest projecte ha estat l'estudi de la interacció entre el sistema cannabinoide i l’èxtasi. En primer lloc es va observar l'efecte de l'èxtasi sobre la dependència física que produeixen els cannabinoides, en concret el Delta9-Tethahidrocannabinol, principal principi actiu de la marihuana. Per això vam administrar crònicament ratolins amb THC fins que es van fer depenents a la droga i se’ls hi va desencadenar una síndrome d’abstinència. Els signes físics que mostra un individu quan se li retira una droga indiquen la dependència que l'individu té per aquesta droga. Vam observar que l'èxtasi era capaç de disminuir els efectes de la síndrome d'abstinència a cannabinoides. En segon lloc vam estudiar la participació del sistema cannabinoide endogen, en concret el receptor CB1 en les propietats farmacològiques i addictives de l’èxtasi. Per això vam fer servir ratolins sense el receptor CB1 i vam observar les diferències en els efectes de l’èxtasi respecte animals normals. Per això vam observar l’activitat locomotora, la temperatura, l’ansietat i els efectes reforçants de l’èxtasi en tots dos genotips. En animals normals l’èxtasi produeix un augment tant en la locomoció com en la temperatura, tanmateix, aquest augment es veu disminuït en els animals sense receptor CB1. També vam observar els efectes ens els efectes de recompensa primària de l’èxtasi en ambdós genotips. La recompensa primària es refereix a quant li agrada un individu un estímul. No vam observar diferències entre animals knockout pel receptor CB1 i animals normals. També vam analitzar els efectes reforçants de l’èxtasi en tots dos genotips. Els efectes reforçants d’una droga indiquen quant vol un individu aconseguir al droga. Vam observar que malgrat els efectes de recompensa primària resten intactes en els animals CB1 knockout, aquest animals no estan reforçats per l’èxtasi. Així, als animals CB1 knockout els hi agrada l’èxtasi però no fan cap esforç per aconseguir-lo. Per tant, el receptor CB1 regula els efectes sobre la locomoció, la temperatura i el reforç produïts per l’èxtasi.
Resumo:
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioural and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A receptor selective agonist ()DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of the 5-HT1A receptor agonist (±)-8-OH-DPAT to stimulate 35SGTPS binding was detected in the hippocampal CA1 area of CB1 receptor knockout mice. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A receptors to Gi/o proteins in the hippocampus might be involved in these effects.
Resumo:
Stress can cause damage and atrophy of neurons in the hippocampus by deregulating the expression of neurotrophic factors that promote neuronal plasticity. The endocannabinoid system represents a physiological substrate involved in neuroprotection at both cellular and emotional levels. The lack of CB1 receptor alters neuronal plasticity and originates an anxiety-like phenotype in mice. In the present study, CB1 knockout mice exhibited an augmented response to stress revealed by the increased despair behavior and corticosterone levels showed in the tail suspension test and decreased brain derived neurotrophic factor (BDNF) levels in the hippocampus. Interestingly, local administration of BDNF in the hippocampus reversed the increased despair behavior of CB1 knockout mice, confirming the crucial role played by BDNF on the emotional impairment of these mutants. The neurotrophic deficiency seems to be specific for BDNF since no differences were found in the levels of NGF and NT-3, two additional neurotrophic factors. Moreover, BDNF impairment is not related to the activity of its specific receptor TrkB or the activity of the transcription factor CREB. These results suggest that the lack of CB1 receptor originates an enhanced response to stress and neuronal plasticity by decreasing BDNF levels in the hippocampus that lead to impairment in the responses to emotional disturbances.
Resumo:
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.
Resumo:
Background: 3, 4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug widely abused by young people. The endocannabinoid system is involved in the addictive processes induced by different drugs of abuse. However, the role of this system in the pharmacological effects of MDMA has not been yet clarified.Methods: Locomotion, body temperature and anxiogenic-like responses were evaluated after acute MDMA administration in CB1 knockout mice. Additionally, MDMA rewarding properties were investigated in the place conditioning and the intravenous self-administration paradigms. Extracellular levels of DA in the nucleus accumbens were also analyzed after a single administration of MDMA by in vivo microdialysis. Results: Acute MDMA administration increased locomotor activity, body temperature and anxiogenic-like responses in wild type mice, but these responses were lower or abolished in knockout animals. MDMA produced similar conditioned place preference and increased dopamine extracellular levels in the nucleus accumbens in both genotypes. Nevertheless, CB1 knockout mice failed to self-administer MDMA at any of the doses used. Conclusions: These results indicate that CB1 cannabinoid receptors play an important role in the acute prototypical effects of MDMA, and are essential in the acquisition of an operant behavior to self-administer this drug.
Resumo:
La investigació que es presenta en aquest treball de recerca parteix de la necessitat d'avaluar rigorosament els programes d'innovació AICLE (Aprenentatge Integrat de Contingut i Llengua Estrangera) que es porten a terme en alguns centres educatius de secundària de Catalunya. Les dades de l'anàlisi, recollides en un institut de secundària, tenen com a punt de partida les programacions de tres unitats didàctiques AICLE de ciències en anglès a diferents nivells educatius de l'etapa de secundària obligatòria (ESO). Amb l'objectiu de poder presentar un producte entenedor i fiable s'han realitzat diverses categoritzacions dels continguts curriculars, les quals han possibilitat fer una anàlisi exhaustiva de l'existència o no d'una concordança entre les tasques d'avaluació i les tasques d'aprenentatge en les aules AICLE i alhora analitzar l'adequació d'aquestes tasques per avaluar i promoure l'assoliment de dues de les vuit competències que el currículum català defineix com a bàsiques en el currículum de l'ensenyament secundari obligatori: Cb1 (competència comunicativa) i Cb5 (competència d'aprendre a aprendre)
Resumo:
The possible interactions between Delta9-tetrahydrocannabinol (THC) and nicotine remain unclear in spite of the current association of cannabis and tobacco in humans. The aim of the present study was to explore the interactions between these two drugs of abuse by evaluating the consequences of THC administration on the somatic manifestations and the aversive motivational state associated to nicotine withdrawal in mice. Acute THC administration significantly decreased the incidence of several nicotine withdrawal signs precipitated by mecamylamine or naloxone, such as wet-dog-shakes, paw tremor and scratches. In both experimental conditions, the global withdrawal score was also significantly attenuated by acute THC administration. THC also reversed conditioned place aversion associated to naloxone precipitated nicotine withdrawal. We have then evaluated whether this effect of THC was due to possible adaptive changes induced by chronic nicotine on CB1 cannabinoid receptors. The stimulation of GTPS-binding proteins by the cannabinoid agonist WIN 55,212-2 and the density of CB1 cannabinoid receptor binding labelled with [3H] CP-55,940 were not modified by chronic nicotine treatment in the different brain structures investigated. Finally, we evaluated the consequences of THC administration on c-Fos expression in several brain structures after chronic nicotine administration and withdrawal. c-Fos was decreased in the caudate putamen and the dentate gyrus after mecamylamine precipitated nicotine withdrawal. However, acute THC administration did not modify c-Fos expression under these experimental conditions. Taken together, these results indicate that THC administration attenuated somatic signs of nicotine withdrawal and this effect was not associated to compensatory changes on CB1 cannabinoid receptors during chronic nicotine administration. In addition, THC also ameliorated the aversive motivational consequences of nicotine withdrawal.
Resumo:
Rationale: Acute behavioural effects and motivational responses induced by nicotine can be modulated by the endocannabinoid system supporting the existence of a physiological interaction between these two systems. Objectives: The present study was designed to examine the possible involvement of the cannabinoid system in the anxiolytic- and anxiogenic-like responses induced by nicotine in mice. Methods: Animals were only exposed once to nicotine. The acute administration of low (0.05, sc) or high (0.8 mg/kg, sc) doses of nicotine produced opposite effects in the elevated plus-maze, i.e., anxiolytic- and anxiogenic-like responses, respectively. The effects of the pretreatment with the CB1 cannabinoid receptor antagonist, rimonabant (0.25, 0.5 and 1 mg/kg, ip), and the cannabinoid agonist, 9-tetrahydrocannabinol (0.1 mg/kg, ip), were evaluated on the anxiolytic- and anxiogenic-like responses induced by nicotine. Results: Rimonabant completely abolished nicotine-induced anxiolytic-like effects and increased the anxiogenic-like responses of nicotine, suggesting an involvement of CB1 receptors in these behavioural responses. On the other hand, 9-tetrahydrocannabinol failed to modify nicotine anxiolytic-like responses, but attenuated its anxiogenic-like effects. In addition the association of non-effective doses of 9-tetrahydrocannabinol and nicotine produced clear anxiolytic-like responses. Conclusions: These results demonstrate that the endogenous cannabinoid system is involved in the regulation of nicotine anxiety-like behaviour in mice, and provide new findings to support the use of cannabinoid antagonists in the treatment of tobacco addiction.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).
Resumo:
The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this process.
Resumo:
Background and aims: Anandamide is an endocannabinoid that evokes hypotension by interaction with peripheral cannabinoid CB1 receptors and with the perivascular transient receptor potential vanilloid type 1 protein (TRPV1). As anandamide has been implicated in the vasodilated state in advanced cirrhosis, the study investigated whether the mesenteric bed from cirrhotic rats has an altered and selective vasodilator response to anandamide. Methods: We assessed vascular sensitivity to anandamide, mRNA and protein expression of cannabinoid CB1 receptor and TRPV1 receptor, and the topographical distribution of cannabinoid CB1 receptors in resistance mesenteric arteries of cirrhotic and control rats. Results: Mesenteric vessels of cirrhotic animals displayed greater sensitivity to anandamide than control vessels. This vasodilator response was reverted by CB1 or TRPV1 receptor blockade, but not after endothelium denudation or nitric oxide inhibition. Anandamide had no effect on distal femoral arteries. CB1 and TRPV1 receptor protein was higher in cirrhotic than in control vessels. Neither CB1 mRNA nor protein was detected in femoral arteries. Immunochemistry showed that CB1 receptors were mainly in the adventitia and in the endothelial monolayer, with higher expression observed in vessels of cirrhotic rats than in controls. Conclusions: These results indicate that anandamide is a selective splanchnic vasodilator in cirrhosis which predominantly acts via interaction with two different types of receptors, CB1 and TRPV1 receptors, which are mainly located in perivascular sensory nerve terminals of the mesenteric resistance arteries of these animals.