11 resultados para Brain volumes
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A recent publication reported an exciting polygenic effect of schizophrenia (SCZ) risk variants, identified by a large genome-wide association study (GWAS), on total brain and white matter volumes in schizophrenic patients and, even more prominently, in healthy subjects. The aim of the present work was to replicate and then potentially extend these findings. According to the original publication, polygenic risk scores using single nucleotide polymorphism (SNP) information of SCZ GWAS (polygenic SCZ risk scores; PSS) were calculated in 122 healthy subjects, enrolled in a structural magnetic resonance imaging (MRI) study. These scores were computed based on P-values and odds ratios available through the Psychiatric GWAS Consortium. In addition, polygenic white matter scores (PWM) were calculated, using the respective SNP subset in the original publication. None of the polygenic scores, either PSS or PWM, were found to be associated with total brain, white matter or gray matter volume in our replicate sample. Minor differences between the original and the present study that might have contributed to lack of reproducibility (but unlikely explain it fully), are number of subjects, ethnicity, age distribution, array technology, SNP imputation quality and MRI scanner type. In contrast to the original publication, our results do not reveal the slightest signal of association of the described sets of GWAS-identified SCZ risk variants with brain volumes in adults. Caution is indicated in interpreting studies building on polygenic risk scores without replication sample.
Resumo:
Background: Evidence of a role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of eating disorders (ED) has been provided by association studies and by murine models. BDNF plasma levels have been found altered in ED and in psychiatric disorders that show comorbidity with ED. Aims: Since the role of BDNF levels in ED-related psychopathological symptoms has not been tested, we investigatedthe correlation of BDNF plasma levels with the Symptom Checklist 90 Revised (SCL-90R) questionnaire in a total of 78 ED patients. Methods: BDNF levels, measured bythe enzyme-linked immunoassay system, and SCL-90R questionnaire, were assessed in a total of 78 ED patients. The relationship between BDNF levels and SCL-90R scales was calculated using a general linear model. Results: BDNF plasma levels correlated with the Global Severity Index and the Positive Symptom Distress Index global scales and five of the nine subscales in the anorexia nervosa patients. BDNF plasma levels were able to explain, in the case of the Psychoticism subscale, up to 17% of the variability (p = 0.006). Conclusion: Our data suggest that BDNF levels could be involved in the severity of the disease through the modulation of psychopathological traits that are associated with the ED phenotype.
Resumo:
Murine models and association studies in eating disorder (ED) patients have shown a role for the brain-derived neurotrophic factor (BDNF) in eating behavior. Some studies have shown association of BDNF -270C/T single-nucleotide polymorphism (SNP) with bulimia nervosa (BN), while BDNF Val66Met variant has been shown to be associated with both BN and anorexia nervosa (AN). To further test the role of this neurotrophin in humans, we screened 36 SNPs in the BDNF gene and tested for their association with ED and plasma BDNF levels as a quantitative trait. We performed a family-based association study in 106 ED nuclear families and analyzed BDNF blood levels in 110 ED patients and in 50 sib pairs discordant for ED. The rs7124442T/rs11030102C/rs11030119G haplotype was found associated with high BDNF levels (mean BDNF TCG haplotype carriers = 43.6 ng/ml vs. mean others 23.0 ng/ml, P = 0.016) and BN (Z = 2.64; P recessive = 0.008), and the rs7934165A/270T haplotype was associated with AN (Z =-2.64; P additive = 0.008). The comparison of BDNF levels in 50 ED discordant sib pairs showed elevated plasma BDNF levels for the ED group (mean controls = 41.0 vs. mean ED = 52.7; P = 0.004). Our data strongly suggest that altered BDNF levels modulated by BDNF gene variability are associated with the susceptibility to ED, providing physiological evidence that BDNF plays a role in the development of AN and BN, and strongly arguing for its involvement in eating behavior and body weight regulation.
Resumo:
Migration-related issues have, since approximately 2000, been the object of increased attention at the international level. This has led, among other things, to the production of international narratives, which aim both at understanding migration and at proposing policy recommendations on how to address it, with the objective of improving the governance of migration at the global level. But this implies overcoming dilemmas stemming from the diverging interests of states and other actors (like NGOs and the private sector). This article examines the way in which international migration narratives address skilled migration, which is characterised by some of the clearest political trade-offs between stakeholders. It argues that these narratives attempt to speak to all parties and conciliate contradictory arguments about what should be done, in order to discursively overcome policy dilemmas and create a consensus. While this is line with the mandate of international organizations, it depoliticises migration issues.
Resumo:
The earning structure in science is known to be flat relative to the one in the private sector, which could cause a brain drain toward the private sector. In this paper, we assume that agents value both money and fame and study the role of the institution of science in the allocation of talent between the science sector and the private sector. Following works on the Sociology of Science, we model the institution of science as a mechanism distributing fame (i.e. peer recognition). We show that since the intrinsic performance is less noisy signal of talent in the science sector than in the private sector, a good institution of science can mitigate the brain drain. We also find that providing extra monetary incentives through the market might undermine the incentives provided by the institution and thereby worsen the brain drain. Finally, we study the optimal balance between monetary and non-monetary incentives in science.
Resumo:
The earning structure in science is known to be flat relative to the one in theprivate sector, which could cause a brain drain toward the private sector. In thispaper, we assume that agents value both money and fame and study the role ofthe institution of science in the allocation of talent between the science sector andthe private sector. Following works on the Sociology of Science, we model theinstitution of science as a mechanism distributing fame (i.e. peer recognition). Weshow that since the intrinsic performance is less noisy signal of talent in the sciencesector than in the private sector, a good institution of science can mitigate thebrain drain. We also find that providing extra monetary incentives through themarket might undermine the incentives provided by the institution and therebyworsen the brain drain. Finally, we study the optimal balance between monetaryand non-monetary incentives in science.
Resumo:
The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.
Resumo:
Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair.
Resumo:
There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin¿induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy.