59 resultados para Bose-Fermi mixtures
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since 87Rb-40K mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.
Resumo:
Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.
Resumo:
We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.
Resumo:
We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.
Resumo:
We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.
Resumo:
We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.
Resumo:
We report variational calculations, in the hypernetted-chain (HNC)-Fermi-HNC scheme, of one-body density matrices and one-particle momentum distributions for 3He-4He mixtures described by a Jastrow correlated wave function. The 4He condensate fractions and the 3He strength poles are examined and compared with the Monte Carlo available results. The agreement has been found to be very satisfactory. Their density dependence is also studied.
Resumo:
The ground-state properties of the 3He-4He mixture are investigated by assuming the wave function to be a product of pair correlations. The antisymmetry of the 3He component is taken into account by Fermi-hypernetted-chain techniques and the results are compared with those obtained from the lowest-order Wu-Feenberg expansion and the boson-boson approximation. A little improvement is found in the 3He maximum solubility. A microscopic theory to calculate 3He static properties such as zero-concentration chemical potential and excess-volume parameter is derived and the results are compared with the experiments.
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state
Resumo:
The contributions of the correlated and uncorrelated components of the electron-pair density to atomic and molecular intracule I(r) and extracule E(R) densities and its Laplacian functions ∇2I(r) and ∇2E(R) are analyzed at the Hartree-Fock (HF) and configuration interaction (CI) levels of theory. The topologies of the uncorrelated components of these functions can be rationalized in terms of the corresponding one-electron densities. In contrast, by analyzing the correlated components of I(r) and E(R), namely, IC(r) and EC(R), the effect of electron Fermi and Coulomb correlation can be assessed at the HF and CI levels of theory. Moreover, the contribution of Coulomb correlation can be isolated by means of difference maps between IC(r) and EC(R) distributions calculated at the two levels of theory. As application examples, the He, Ne, and Ar atomic series, the C2-2, N2, O2+2 molecular series, and the C2H4 molecule have been investigated. For these atoms and molecules, it is found that Fermi correlation accounts for the main characteristics of IC(r) and EC(R), with Coulomb correlation increasing slightly the locality of these functions at the CI level of theory. Furthermore, IC(r), EC(R), and the associated Laplacian functions, reveal the short-ranged nature and high isotropy of Fermi and Coulomb correlation in atoms and molecules
Resumo:
We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface.
Resumo:
Relevant features of the dynamic structure function S(q,¿) in 3-4He mixtures at zero temperature are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous constraints to the different contributions to S(q,¿), coming from 3He and 4He elementary excitations, as well as to explore the role of the cross term S(3,4)(q,¿). Both the low-q (phonon-roton 4He excitations and 1p-1h 3He excitations) and high-q (deep-inelastic-scattering) ranges are discussed.