5 resultados para Bitume modificatoMasticeMaster CurveDynamic Shear RheometerParticle Flow Code
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of stochastic resonance, i.e., the signal to noise ratio, the escape time distribution, and the mean first passage time. We also discuss the limitations and role of the linear response theory in its applications to the theory of stochastic resonance.
Resumo:
We study fracturelike flow instabilities that arise when water is injected into a Hele-Shaw cell filled with aqueous solutions of associating polymers. We explore various polymer architectures, molecular weights, and solution concentrations. Simultaneous measurements of the finger tip velocity and of the pressure at the injection point allow us to describe the dynamics of the finger in terms of the finger mobility, which relates the velocity to the pressure gradient. The flow discontinuities, characterized by jumps in the finger tip velocity, which are observed in experiments with some of the polymer solutions, can be modeled by using a nonmonotonic dependence between a characteristic shear stress and the shear rate at the tip of the finger. A simple model, which is based on a viscosity function containing both a Newtonian and a non-Newtonian component, and which predicts nonmonotonic regions when the non-Newtonian component of the viscosity dominates, is shown to agree with the experimental data.
Resumo:
We have studied the structural changes that fatty acid monolayers in the Ov phase undergo when a simple shear flow is imposed. A strong coupling is revealed by the changes in domain structure that are observable using Brewster angle microscopy, suggesting the possibility of shear alignment. The dependence of the alignment on the molecular polar tilt proves that the mechanism is different than in nematic liquid crystals. We argue that the degenerate lattice symmetry lines of the underlying pseudohexagonal lattice align in the flow direction, and we explain the observed alignment angle using geometrical arguments.
Resumo:
Morphological transitions are analyzed for a radial multiparticle diffusion-limited aggregation process grown under a convective drift. The introduction of a tangential flow changes the morphology of the diffusion-limited structure, into multiarm structures, inclined opposite to the flow, whose limit consists of single arms, when decreasing density. The case of shear flow is also considered. The anisotropy of the patterns is characterized in terms of a tangential correlation function based analysis. Comparison between the simulation results and preliminary experimental results has been done.
Resumo:
We study the dynamics of shear-band formation and evolution using a simple rheological model. The description couples the local structure and viscosity to the applied shear stress. We consider in detail the Couette geometry, where the model is solved iteratively with the Navier-Stokes equation to obtain the time evolution of the local velocity and viscosity fields. It is found that the underlying reason for dynamic effects is the nonhomogeneous shear distribution, which is amplified due to a positive feedback between the flow field and the viscosity response of the shear thinning fluid. This offers a simple explanation for the recent observations of transient shear banding in time-dependent fluids. Extensions to more complicated rheological systems are considered.