22 resultados para Bistable percept
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We consider the effects of external, multiplicative white noise on the relaxation time of a general representation of a bistable system from the points of view provided by two, quite different, theoretical approaches: the classical Stratonovich decoupling of correlations and the new method due to Jung and Risken. Experimental results, obtained from a bistable electronic circuit, are compared to the theoretical predictions. We show that the phenomenon of critical slowing down appears as a function of the noise parameters, thereby providing a correct characterization of a noise-induced transition.
Resumo:
A precise digital simulation of a bistable system under the effect of colored noise is carried out. A set of data for the mean first-passage time is obtained. The results are interpreted and compared with presently available theories, which are revisited following a new insight. Discrepancies that have been discussed in the literature are understood within our framework.
Resumo:
The exponential coefficient in the first-passage-time problem for a bistable potential with highly colored noise is predicted to be (8/27 by all existing theories. On the other hand, we show herein that all existing numerical evidence seems to indicate that the coefficient is actually larger by about (4/3, i.e., that the numerical factor in the exponent is approximately (32/81. Existing data cover values of ¿V0/D up to ~20, where V0 is the barrier height, ¿ the correlation time of the noise, and D the noise intensity. We provide an explanation for the modified coefficinet, the explanation also being based on existing numerical simulations. Whether the value (8/27 predicted by all large-¿ theories is achieved for even larger values of ¿V0/D is unknown but appears questionable (except perhaps for enormously large, experimentally inaccessible values of this factor) in view of currently available results.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
One-dimensional arrays of nonlinear electronic circuits are shown to support propagation of pulses when operating in a locally bistable regime, provided the circuits are under the influence of a global noise. These external random fluctuations are applied to the parameter that controls the transition between bistable and monostable dynamics in the individual circuits. As a result, propagating fronts become destabilized in the presence of noise, and the system self-organizes to allow the transmission of pulses. The phenomenon is also observed in weakly coupled arrays, when propagation failure arises in the absence of noise.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
We have investigated the behavior of bistable cells made up of four quantum dots and occupied by two electrons, in the presence of realistic confinement potentials produced by depletion gates on top of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic architectures based on the concept of quantum cellular automata (QCA) and of ground state computation, which have been proposed as an alternative to traditional transistor-based logic circuits. We have focused on the robustness of the operation of such cells with respect to asymmetries derived from fabrication tolerances. We have developed a two-dimensional model for the calculation of the electron density in a driven cell in response to the polarization state of a driver cell. Our method is based on the one-shot configuration-interaction technique, adapted from molecular chemistry. From the results of our simulations, we conclude that an implementation of QCA logic based on simple ¿hole arrays¿ is not feasible, because of the extreme sensitivity to fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not immediately applicable to the implementation of logic gates and not suitable for large scale integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA cells.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Recently, there has been an increased interest on the neural mechanisms underlying perceptual decision making. However, the effect of neuronal adaptation in this context has not yet been studied. We begin our study by investigating how adaptation can bias perceptual decisions. We considered behavioral data from an experiment on high-level adaptation-related aftereffects in a perceptual decision task with ambiguous stimuli on humans. To understand the driving force behind the perceptual decision process, a biologically inspired cortical network model was used. Two theoretical scenarios arose for explaining the perceptual switch from the category of the adaptor stimulus to the opposite, nonadapted one. One is noise-driven transition due to the probabilistic spike times of neurons and the other is adaptation-driven transition due to afterhyperpolarization currents. With increasing levels of neural adaptation, the system shifts from a noise-driven to an adaptation-driven modus. The behavioral results show that the underlying model is not just a bistable model, as usual in the decision-making modeling literature, but that neuronal adaptation is high and therefore the working point of the model is in the oscillatory regime. Using the same model parameters, we studied the effect of neural adaptation in a perceptual decision-making task where the same ambiguous stimulus was presented with and without a preceding adaptor stimulus. We find that for different levels of sensory evidence favoring one of the two interpretations of the ambiguous stimulus, higher levels of neural adaptation lead to quicker decisions contributing to a speed–accuracy trade off.
Resumo:
We consider a general class of non-Markovian processes defined by stochastic differential equations with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times associated with correlation functions in the steady state. This formalism is a generalization of a previous approach for Markovian processes. The theoretical results are shown to be in satisfactory agreement both with experimental data for a cubic bistable system and also with a computer simulation of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in different situations.
Resumo:
The recent theory of Tsironis and Grigolini for the mean first-passage time from one metastable state to another of a bistable potential for long correlation times of the noise is extended to large but finite correlation times.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
Herein we present a calculation of the mean first-passage time for a bistable one-dimensional system driven by Gaussian colored noise of strength D and correlation time ¿c. We obtain quantitative agreement with experimental analog-computer simulations of this system. We disagree with some of the conclusions reached by previous investigators. In particular, we demonstrate that all available approximations that lead to a state-dependent diffusion coefficient lead to the same result for small D¿c.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by dichotomous colored noise. We carry out an asymptotic expansion for short correlation times ¿c of the colored noise and find results that differ from those reported earlier. In particular, to retain corrections to O(¿c) we find that it is necessary to retain up to four derivatives of the potential function. We compare our asymptotic results to existing ones and also to exact ones obtained from numerical integration.