5 resultados para Biol
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics
Resumo:
Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter.
Resumo:
Sargassum muticum (Yendo) Fensholt, feofícea originaria de Japón (Pacífico Oeste), está extendiendo rápidamente su área de distribución, asociada a los transportes de ostras japonesas (CRITCHLEY, A. & R. DIJKEMA, Bot. Mar. 27:211-216,1984). Actualmente está citada en el Japón, en la costa Pacífica de América del Norte, en el Atlántico europeo de Inglaterra, Canal de la Mancha y Holanda y en el Mediterráneo francés (CRITCHLEY, A. J. Mar. Biol. Ass. U.K. 63: 617-625, 1983).
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Score-based biotic indices are widely used to evaluate the water quality of streams and rivers. Few adaptations of these indices have been done for South America because there is a lack of knowledge on mac-roinvertebrate taxonomy, distribution and tolerance to pollution in the region. Several areas in the Andes are densely populated and there is need for methods to assess the impact of increasing human pressures on aquatic ecosystems. Considering the unique ecological and geographical features of the Andes, macroinvertebrate indices used in other regions must be adapted with caution. Here we present a review of the literature on mac-roinvertebrate distribution and tolerance to pollution in Andean areas above 2 000masl. Using these data, we propose an Andean Biotic Index (ABI), which is based on the BMWP index. In general, ABI includes fewer macroinvertebrate families than in other regions of the world where the BMWP index has been applied because altitude restricts the distribution of several families. Our review shows that in the high Andes, the tolerance of several macroinvertebrate families to pollution differs from those reported in other areas. We tested the ABI index in two basins in Ecuador and Peru, and compared it to other BMWP adaptations using the reference condi-tion approach. The ABI index is extremely useful for detecting the general impairment of rivers but class quality boundaries should be defined independently for each basin because reference conditions may be different. The ABI is widely used in Ecuador and Peru, with high correlations with land-use pressures in several studies. The ABI index is an integral part of the new multimetric index designed for high Andean streams (IMEERA). Rev. Biol. Trop. 62 (Suppl. 2): 249-273. Epub 2014 April 01.