17 resultados para Biochemical assays
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.
Resumo:
Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae. In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1–16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
Mi proyecto de tesis se basaba en el estudio del papel de profilina 1 en la formación de lamelas, para ello generamos una proteína recombinante y transducible, con el objetivo de poder modificar los niveles endógenos de profilina. Objetivos: i-caracterización bioquímica los tres sitios de union conocidos de la proteína de transducción, el sitio de unión a fosfo-inocitoles (PIP), el de unión a actina (Ac) y el de unión a poli-prolinas (PLP). ii-estudio de la polimerización in-vitro de actina - PTD4-Profilina1 iii-estudio de las proteínas componentes de lamelas inducidas por PTD4-Profilina1. Plan de trabajo: i-Para comprobar la funcionalidad los 3 sitios de unión fueron necesarias las primeras 6 semanas, ya que en primer lugar había que expresar y purificar el peptido Srv2, necesario para el ensayo de PLP. En segundo lugar, se obtuvieron los datos de las concentraciones adecuadas de lípidos para el ensayo de fosfo-inocitoles y por ultimo, se purifico la actina necesaria para el ensayo de unión a actina. Una vez establecida la funcionalidad de la proteína, se procedió a: ii-el estudio de polimerización in-vitro, que llevo 2 semanas. Demostrando que in-vitro era capaz de inhibir la polimerización de una manera similar a la endógena. Una vez terminados estos ensayos, se procedio a: iii-la caracterización inmunohistoquímica de las proteínas componentes de la lamela que fue llevado a cabo en 4 semanas. Para ello se usaron anticuerpos contra: alfa-actinina, talina, vinculina, ENA/Vasp y paxillina. Conclusiones: i-las propiedades bioquímicas de la PTD4-Profilina1 son similares a las de la profilina endógena. ii-los estudios de polimerización indican que la polimerización se produce de manera similar a la endogena. iii-los ensayos de inmunohistoquímica sugieren que, talina esta ausente y que las demás están presentes aunque en menor concentración y con otra distribución comparadas con los controles.
Resumo:
Quality of newly hatched larvae (NHL) of Maja brachydactyla in captivity has been characterized throughout the year to evaluate their availability for mass production. Spawning took place every month and NHL were collected and analyzed to estimate individual dry weight (DW) and proximate biochemical composition (protein, carbohydrate and lipids). Lipid class, fatty acid composition, amino acid profile, mineral and vitamins A, E and C contents were analyzed seasonally. NHL obtained throughout the year are a potential source for aquaculture purposes, since the increment in the relative protein and lipid (especially phospholipids and n-3 PUFA) content might compensate the decrease in DW of larvae hatched from broodstock kept during one year in captivity. However, the decrease in vitamins A and E as well as in certain essential amino acids (Lys, Val, and His) and trace elements (Cu and Fe) of NHL at the end of the year might be indicative of a nutritional deficiency in broodstock diets.
Resumo:
The applicability of the protein phosphatase inhibition assay (PPIA) to the determination of okadaic acid (OA) and its acyl derivatives in shellfish samples has been investigated, using a recombinant PP2A and a commercial one. Mediterranean mussel, wedge clam, Pacific oyster and flat oyster have been chosen as model species. Shellfish matrix loading limits for the PPIA have been established, according to the shellfish species and the enzyme source. A synergistic inhibitory effect has been observed in the presence of OA and shellfish matrix, which has been overcome by the application of a correction factor (0.48). Finally, Mediterranean mussel samples obtained from Rı´a de Arousa during a DSP closure associated to Dinophysis acuminata, determined as positive by the mouse bioassay, have been analysed with the PPIAs. The OA equivalent contents provided by the PPIAs correlate satisfactorily with those obtained by liquid chromatography–tandem mass spectrometry (LC–MS/MS).
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Resumo:
The aim of this study was to investigate the effect of combined pressure/temperature treatments (200, 400 and 600 MPa, at 20 and 40 °C) on key physical and chemical characteristics of white cabbage (Brassica oleracea L. var. capitata alba). Thermal treatment (blanching) was also investigated and compared with high-pressure processing (HPP). HPP at 400 MPa and 20–40 °C caused significantly larger colour changes compared to any other pressure or thermal treatment. All pressure treatments induced a softening effect, whereas blanching did not significantly alter texture. Both blanching and pressure treatments resulted in a reduction in the levels of ascorbic acid, effect that was less pronounced for blanching and HPP at 600 MPa and 20–40 °C. HPP at 600 MPa resulted in significantly higher total phenol content, total antioxidant capacity and total isothiocyanate content compared to blanching. In summary, the colour and texture of white cabbage were better preserved by blanching. However, HPP at 600 MPa resulted in significantly higher levels of phytochemical compounds. The results of this study suggest that HPP may represent an attractive technology to process vegetable-based food products that better maintains important aspects related to the content of health-promoting compounds. This may be of particular relevance to the food industry sector involved in the development of convenient novel food products with excellent functional properties
Resumo:
Background: Despite the widespread use of interferon-gamma release assays (IGRAs), their role in diagnosing tuberculosis and targeting preventive therapy in HIV-infected patients remains unclear. We conducted a comprehensive systematic review to contribute to the evidence-based practice in HIV-infected people. Methodology/Principal Findings: We searched MEDLINE, Cochrane, and Biomedicine databases to identify articles published between January 2005 and July 2011 that assessed QuantiFERON H -TB Gold In-Tube (QFT-GIT) and T-SPOT H .TB (T-SPOT.TB) in HIV-infected adults. We assessed their accuracy for the diagnosis of tuberculosis and incident active tuberculosis, and the proportion of indeterminate results. The search identified 38 evaluable studies covering a total of 6514 HIV-infected participants. The pooled sensitivity and specificity for tuberculosis were 61% and 72% for QFT-GIT, and 65% and 70% for T-SPOT.TB. The cumulative incidence of subsequent active tuberculosis was 8.3% for QFT-GIT and 10% for T-SPOT.TB in patients tested positive (one study each), and 0% for QFT-GIT (two studies) and T-SPOT.TB (one study) respectively in those tested negative. Pooled indeterminate rates were 8.2% for QFT-GIT and 5.9% for T-SPOT.TB. Rates were higher in high burden settings (12.0% for QFT-GIT and 7.7% for T-SPOT.TB) than in low-intermediate burden settings (3.9% for QFT-GIT and 4.3% for T-SPOT.TB). They were also higher in patients with CD4 + T-cell count, 200 (11.6% for QFT-GIT and 11.4% for T-SPOT.TB) than in those with CD4 + T-cell count $ 200 (3.1% for QFT-GIT and 7.9% for T-SPOT.TB). Conclusions/Significance: IGRAs have suboptimal accuracy for confirming or ruling out active tuberculosis disease in HIV-infected adults. While their predictive value for incident active tuberculosis is modest, a negative QFT-GIT implies a very low short- to medium-term risk. Identifying the factors associated with indeterminate results will help to optimize the use of IGRAs in clinical practice, particularly in resource-limited countries with a high prevalence of HIV-coinfection.
Resumo:
Interferon-γ-based assays, collectively known as IFN-γ release assays (IGRAs), have emerged as a reliable alternative to the old tuberculin skin test (TST) for the immunodiagnosis of tuberculosis (TB) infection. The 2 commercially available tests, the enzyme-linked immunosorbent assay (ELISA), QuantiFERON-TB Gold Intube (QFT-IT), and the enzyme-linked immunospot assay (ELISPOT), T-SPOT.TB, are more accurate than TST for the diagnosis of TB, since they are highly specific and correlate better with the existence of risk factors for the infection. According to the available data, T-SPOT.TB obtains a higher number of positive results than QFT-IT, while its specificity seems to be lower. Although the sensitivity of the IFN-γ -based assays may be impaired to some extent by cellular immunosuppression and extreme ages of life, they perform better than TST in these situations. Data from longitudinal studies suggest that IFN-γ-based tests are better predictors of subsequent development of active TB than TST; however this prognostic value has not been consistently demonstrated. This review focuses on the clinical use of the IFN-γ -based tests in different risk TB groups, and notes the main limitations and areas for future development.
Resumo:
Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA) has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.
Resumo:
The aim of this study was to identity metabolites and transformation products (TPs) in chicken muscle from amoxicillin (AMX), cephapirin (PIR) and ceftiofur (TIO), which are antibiotics of the β-lactam family. Liquid chromatography coupled to quadrupole time-of-flight (QqTOF) mass spectrometry was utilized due to its high resolution, high mass accuracy and MS/MS capacity for elemental composition determination and structural elucidation. Amoxicilloic acid (AMA) and amoxicillin diketopiperazine (DKP) were found as transformation products from AMX. Desacetylcephapirin (DAC) was detected as a metabolite of PIR. Desfuroylceftiofur (DFC) and its conjugated compound with cysteine (DFC-S-Cys) were detected as a result of TIO in contact with chicken muscle tissue. The metabolites and transformation products were also monitored during the in vivo AMX treatment and slaughtering period. It was found that two days were enough to eliminate AMX and associated metabolites/transformation products after the end of administration.
Resumo:
In this thesis (TFG) the results of the comparison of three assays for the measurement of AhR ligand activity are exposed. This study was part of a collaborative project aiming at the characterization of the AhR signaling activities of known naturally occurring compounds to explore the potential of using non-toxic compounds to treat inflammatory diseases via oral administration. The first goal of this project was to find an assay able to measure AhR-activity, so the comparison of different assays has been done in order to find the most convenient one according to the efficiency, sensitivity and precision. Moreover, other elements with operational nature such as price, toxicity of components or ease of use has been considered. From the use of compounds known from the literature to be AhR ligands, three assays have been tested: (1) P450-GloTM CYP1A2 Induction/Inhibition assay, (2) quantitative Polymerase Chain Reaction (qPCR) and (3) DR. CALUX® Bioassay. Moreover, a different experiment using the last assay was performed for the study in vivo of the transport of the compounds tested. The results of the TFG suggested the DR. CALUX® Bioassay as the most promising assay to be used for the screening of samples as AhR-ligands because it is quicker, easier to handle and less expensive than qPCR and more reproducible than the CYP1A2 Induction/Inhibition assay. Moreover, the use of this assay allowed having a first idea of which compounds are uptaken by the epithelial barrier and in with direction the transport happens.