3 resultados para Bidirectional power flow
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Experimental results of a new controller able to support bidirectional power flow in a full-bridge rectifier with boost-like topology are obtained. The controller is computed using port Hamiltonian passivity techniques for a suitable generalized state space averaging truncation system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation results for the full system show the essential correctness of the simplifications introduced to obtain the controller, although some small experimental discrepancies point to several aspects that need further improvement.
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
Three models of flow resistance (a Keulegan-type logarithmic law and two models developed for large-scale roughness conditions: the full logarithmic law and a model based on an inflectional velocity profile) were calibrated, validated and compared using an extensive database (N = 1,533) from rivers and flumes, representative of a wide hydraulic and geomorphologic range in the field of gravel-bed and mountain channels. It is preferable to apply the model based on an inflectional velocity profile in the relative submergence (y/d90) interval between 0.5 and 15, while the full logarithmic law is preferable for values below 0.5. For high relative submergence, above 15, either the logarithmic law or the full logarithmic law can be applied. The models fitted to the coarser percentiles are preferable to those fitted to the median diameter, owing to the higher explanatory power achieved by setting a model, the smaller difference in the goodness-of-fit between the different models and the lower influence of the origin of the data (river or flume).