28 resultados para Bessel polynomials

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document de l'arxiu adjunt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of an $m$-homogeneous polynomial $P$ on $\Bbb{C}^n$ is bounded by $\| P \|_\infty$ times a constant independent of $n$, where $\|\cdot \|_\infty$ denotes the supremum norm on the polydisc $\mathbb{D}^n$. The main result of this paper is that this inequality is hypercontractive, i.e., the constant can be taken to be $C^m$ for some $C>1$. Combining this improved version of the Bohnenblust-Hille inequality with other results, we obtain the following: The Bohr radius for the polydisc $\mathbb{D}^n$ behaves asymptotically as $\sqrt{(\log n)/n}$ modulo a factor bounded away from 0 and infinity, and the Sidon constant for the set of frequencies $\bigl\{ \log n: n \text{a positive integer} \le N\bigr\}$ is $\sqrt{N}\exp\{(-1/\sqrt{2}+o(1))\sqrt{\log N\log\log N}\}$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this survey, results on the representation of a function as an absolutely convergent Fourier integral are collected, classified and discussed. Certain applications are also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We formulate a necessary and sufficient condition for polynomials to be dense in a space of continuous functions on the real line, with respect to Bernstein's weighted uniform norm. Equivalently, for a positive finite measure [lletra "mu" minúscula de l'alfabet grec] on the real line we give a criterion for density of polynomials in Lp[lletra "mu" minúscula de l'alfabet grec entre parèntesis].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimum experimental designs depend on the design criterion, the model andthe design region. The talk will consider the design of experiments for regressionmodels in which there is a single response with the explanatory variables lying ina simplex. One example is experiments on various compositions of glass such asthose considered by Martin, Bursnall, and Stillman (2001).Because of the highly symmetric nature of the simplex, the class of models thatare of interest, typically Scheff´e polynomials (Scheff´e 1958) are rather differentfrom those of standard regression analysis. The optimum designs are also ratherdifferent, inheriting a high degree of symmetry from the models.In the talk I will hope to discuss a variety of modes for such experiments. ThenI will discuss constrained mixture experiments, when not all the simplex is availablefor experimentation. Other important aspects include mixture experimentswith extra non-mixture factors and the blocking of mixture experiments.Much of the material is in Chapter 16 of Atkinson, Donev, and Tobias (2007).If time and my research allows, I would hope to finish with a few comments ondesign when the responses, rather than the explanatory variables, lie in a simplex.ReferencesAtkinson, A. C., A. N. Donev, and R. D. Tobias (2007). Optimum ExperimentalDesigns, with SAS. Oxford: Oxford University Press.Martin, R. J., M. C. Bursnall, and E. C. Stillman (2001). Further results onoptimal and efficient designs for constrained mixture experiments. In A. C.Atkinson, B. Bogacka, and A. Zhigljavsky (Eds.), Optimal Design 2000,pp. 225–239. Dordrecht: Kluwer.Scheff´e, H. (1958). Experiments with mixtures. Journal of the Royal StatisticalSociety, Ser. B 20, 344–360.1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article starts a computational study of congruences of modular forms and modular Galoisrepresentations modulo prime powers. Algorithms are described that compute the maximum integermodulo which two monic coprime integral polynomials have a root in common in a sensethat is defined. These techniques are applied to the study of congruences of modular forms andmodular Galois representations modulo prime powers. Finally, some computational results withimplications on the (non-)liftability of modular forms modulo prime powers and possible generalisationsof level raising are presented.