44 resultados para Bernoulli Polynomials
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.
Resumo:
El 1696 el Marquès de L'Hôpital publicà el primer tractat sistemàtic sobre càlcul diferencial, l'"Analyse des infiniments petits", que es basava en les "Lectiones de calculo differentialium" de Johann Bernoulli. Però podem parlar d'aportacions originals per part de L'Hôpital? L'objectiu d'aquest treball de recerca és comparar el contingut i la forma de l'Analyse i de les Lectiones i detectar possibles influències d'altres autors per intentar, finalment, donar una resposta a aquesta qüestió.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
We derive the chaotic expansion of the product of nth- and first-order multiple stochastic integrals with respect to certain normal martingales. This is done by application of the classical and quantum product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals, polynomials and Wick products, that characterize the Wiener and Poisson processes.
Resumo:
We experimentally question the assertion of Prospect Theory that people display risk attraction in choices involving high-probability losses. Indeed, our experimental participants tend to avoid fair risks for large (up to ? 90), high-probability (80%) losses. Our research hinges on a novel experimental method designed to alleviate the house-money bias that pervades experiments with real (not hypothetical) loses.Our results vindicate Daniel Bernoulli?s view that risk aversion is the dominant attitude,But, contrary to the Bernoulli-inspired canonical expected utility theory, we do find frequent risk attraction for small amounts of money at stake.In any event, we attempt neither to test expected utility versus nonexpected utility theories, nor to contribute to the important literature that estimates value and weighting functions. The question that we ask is more basic, namely: do people display risk aversion when facing large losses, or large gains? And, at the risk of oversimplifying, our answer is yes.
Resumo:
The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of an $m$-homogeneous polynomial $P$ on $\Bbb{C}^n$ is bounded by $\| P \|_\infty$ times a constant independent of $n$, where $\|\cdot \|_\infty$ denotes the supremum norm on the polydisc $\mathbb{D}^n$. The main result of this paper is that this inequality is hypercontractive, i.e., the constant can be taken to be $C^m$ for some $C>1$. Combining this improved version of the Bohnenblust-Hille inequality with other results, we obtain the following: The Bohr radius for the polydisc $\mathbb{D}^n$ behaves asymptotically as $\sqrt{(\log n)/n}$ modulo a factor bounded away from 0 and infinity, and the Sidon constant for the set of frequencies $\bigl\{ \log n: n \text{a positive integer} \le N\bigr\}$ is $\sqrt{N}\exp\{(-1/\sqrt{2}+o(1))\sqrt{\log N\log\log N}\}$.
Resumo:
For a massless fluid (density = 0), the steady flow along a duct is governed exclusively by viscous losses. In this paper, we show that the velocity profile obtained in this limit can be used to calculate the pressure drop up to the first order in density. This method has been applied to the particular case of a duct, defined by two plane-parallel discs. For this case, the first-order approximation results in a simple analytical solution which has been favorably checked against numerical simulations. Finally, an experiment has been carried out with water flowing between the discs. The experimental results show good agreement with the approximate solution
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
We formulate a necessary and sufficient condition for polynomials to be dense in a space of continuous functions on the real line, with respect to Bernstein's weighted uniform norm. Equivalently, for a positive finite measure [lletra "mu" minúscula de l'alfabet grec] on the real line we give a criterion for density of polynomials in Lp[lletra "mu" minúscula de l'alfabet grec entre parèntesis].