15 resultados para BOUNDARY-VALUE-PROBLEMS

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work in this paper concerns the study of conventional and refined heat balance integral methods for a number of phase change problems. These include standard test problems, both with one and two phase changes, which have exact solutions to enable us to test the accuracy of the approximate solutions. We also consider situations where no analytical solution is available and compare these to numerical solutions. It is popular to use a quadratic profile as an approximation of the temperature, but we show that a cubic profile, seldom considered in the literature, is far more accurate in most circumstances. In addition, the refined integral method can give greater improvement still and we develop a variation on this method which turns out to be optimal in some cases. We assess which integral method is better for various problems, showing that it is largely dependent on the specified boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new, accurate form of the heat balance integral method, termed the Combined Integral Method (or CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OER-based learning has the potential to overcome many shortcomings and problems of traditional education. It is not hampered by IP restrictions; can depend on collaborative, cumulative, iterative refinement of resources; and the digital form provides unprecedented flexibility with respect to configuration and delivery. The OER community is a progressive group of educators and learners with decades of learning research to draw from, who know that we must prepare learners for an evolving and diverse reality. Despite this OER tends to replicate the unsuccessful characteristics of traditional education. To remedy this we may need to remember the importance of imperfection, mistakes, problems, disagreement, and the incomplete for engaged learning, and relinquish our notions of perfection, acknowledging that learners learn differently and we need diverse learners. We must stretch our perceptions of quality and provide mechanisms for engaging the incredible pool of educators globally to fulfill the promise of inclusive education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a width parameter that bounds the complexity of classical planning problems and domains, along with a simple but effective blind-search procedure that runs in time that is exponential in the problem width. We show that many benchmark domains have a bounded and small width provided thatgoals are restricted to single atoms, and hence that such problems are provably solvable in low polynomial time. We then focus on the practical value of these ideas over the existing benchmarks which feature conjunctive goals. We show that the blind-search procedure can be used for both serializing the goal into subgoals and for solving the resulting problems, resulting in a ‘blind’ planner that competes well with a best-first search planner guided by state-of-the-art heuristics. In addition, ideas like helpful actions and landmarks can be integrated as well, producing a planner with state-of-the-art performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new family of risk measures, called GlueVaR, within the class of distortion risk measures. Analytical closed-form expressions are shown for the most frequently used distribution functions in financial and insurance applications. The relationship between Glue-VaR, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) is explained. Tail-subadditivity is investigated and it is shown that some GlueVaR risk measures satisfy this property. An interpretation in terms of risk attitudes is provided and a discussion is given on the applicability in non-financial problems such as health, safety, environmental or catastrophic risk management