12 resultados para B1 and lasota strains

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive candidiasis is the most commonly reported invasive fungal infection worldwide. Although Candida albicans remains the main cause, the incidence of emerging Candida species, such as C. parapsilosis is increasing. It has been postulated that C. parapsilosis clinical isolates result from a recent global expansion of a virulent clone. However, the availability of a single genome for this species has so far prevented testing this hypothesis at genomic scales. We present here the sequence of three additional strains from clinical and environmental samples. Our analyses reveal unexpected patterns of genomic variation, shared among distant strains, that argue against the clonal expansion hypothesis. All strains carry independent expansions involving an arsenite transporter homolog, pointing to the existence of directional selection in the environment, and independent origins of the two clinical isolates. Furthermore, we report the first evidence for the existence of recombination in this species. Altogether, our results shed new light onto the dynamics of genome evolution in C. parapsilosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pantoea agglomerans strains are among the most promising biocontrol agents for avariety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistichuman pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting.Results: Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion: Taxonomic mischaracterization was identified as a major problem with P.agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified whichmay be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports should be considered in biosafety assessment of beneficial strains in this species

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain strains of Pantoea are used as biocontrol agents for the suppression of plant diseases. However, their commercial registration is hampered in some countries because of biosafety concerns. This study compares clinical and plant-beneficial strains of P. agglomerans and related species using a phenotypic analysis approach in which plant-beneficial effects, adverse effects in nematode models, and toxicity were evaluated. Plant-beneficial effects were determined as the inhibition of apple fruit infection by Penicillium expansum and apple flower infection by Erwinia amylovora. Clinical strains had no general inhibitory activity against infection by the fungal or bacterial plant pathogens, as only one clinical strain inhibited P. expansum and three inhibited E. amylovora. By contrast, all biocontrol strains showed activity against at least one of the phytopathogens, and three strains were active against both. The adverse effects in animals were evaluated in the plant-parasitic nematode Meloidogyne javanica and the bacterial-feeding nematode Caenorhabditis elegans. Both models indicated adverse effects of the two clinical strains but not of any of the plant-beneficial strains. Toxicity was evaluated by means of hemolytic activity in blood, and genotoxicity with the Ames test. None of the strains, whether clinical or plant-beneficial, showed any evidence of toxicity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a practical exercise for undergraduate students whose main aim is to identify, using genetic crosses, a pair of D. melanogaster mutations (miniature and singed). Each student receives a vial with the problem strain containing two unknown mutations. The first step is to observe and describe both mutations. Then, the students carry out genetic crosses between mutant and normal strains: (P) ♀ mutant strain × ♂ normal strain (P) ♀ normal strain × ♂ mutant strain A different offspring is expected in these crosses: in the first one we will obtain normal females and m sn males, whereas in the second all individuals will present normal phenotype. It is possible to deduce that both are sex linked mutations. With this information and to simplify the amount of work, only F1 individuals from the first cross will be used (m+sn+ / m sn × m sn / Y chrom.) to obtain the F2 generation. By counting the number of miniature (recombinant type), singed (recombinant type), miniature-singed (parental type) and normal (parental type) flies it is possible to estimate the recombination frequency between both genes. Knowing the phenotype, their chromosomal location (X chromosome) and the genetic distance between both mutations, it is possible to identify them by finding all this information in a Drosophila melanogaster genetic map. Additionally, a statistical analysis can be carried out to compare the number of expected F2 individuals with those observed in the experiment. As the distance between both genes is 15.1 m.u., then the expected percentages for each phenotype would be: normal (42.45%), miniature-signed (42.45%), miniature (7.55%) and singed (7.55%). Multiplying the frequency of each class by the total number of individuals obtained in the F2 it is possible to estimate the expected number of flies for each class. Finally, a χ2 test can be computed to ascertain whether there are significant differences between expected and observed number of individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeromonas hydrophila és un bacil gram-negatiu, patogen oportunista d’animal i humans. La patogènesi d’A. Hydrophila és multifactorial. A fi d'identificar gens implicats en la virulència de la soca PPD134/91 d’A. hydrophila, vam realitzar experiments de substracció gènica, que van dur a la detecció de 22 fragments d’ADN que codificaven 19 potencials factors de virulencia, incloent un gen que codificava una proteïna de sistema de secreció de tipus III (T3SS). La importància creixent del T3SS en la patogènesi de diversos bacteris, ens va dur a identificar i analitzar l'agrupació gènica del T3SS de les soques AH-1 i AH-3 d’A. hydrophila. La inactivació dels gens de T3SS aopB i aopD d’A. hydrophila AH-1, i ascV d’A. hydrophila AH-3, comporta una disminució de la citotoxicitat, un increment de la fagocitosi, i una reducció de la virulència en diferents models animals. Aquests resultats demostren que el T3SS és necessari per a la patogenicitat. També vam clonar i seqüenciar una ADP-ribosiltransferasa (AexT) a la soca AH-3 d’A. hydrophila, i vam demostrar que aquesta toxina és translocada via el T3SS, sistema que al seu torn sembla ser induïble in vitro en condicions de depleció de calci. El mutant en el gen aexT de la soca AH-3 d’A. hydrophila va mostrar una lleugera reducció de la virulència, assajada amb diferents mètodes. Mitjançant l'ús de diferents sondes d’ADN, vam determinar la presència del T3SS en soques tant clíniques com ambientals de diferents espècies del gènere Aeromonas: A. hydrophila, A. veronii, i A. caviae, i la codistribució d'aquesta agrupació gènica i el gen aexT. Finalment, amb la finalitat d'estudiar la regulació transcripcional de l'agrupació gènica de T3SS i de l’efector AexT A. hydrophila AH-3, vam aïllar els promotors predits per l’operó aopN-aopD i el gen aexT, i els vam fusionar amb el gen reporter gfp (Green Fluorescence Protein). A més, vam demostrar que l'expressió d'ambdós promotors depèn de diferents components bacterians, com per exemple el sistema de dos components PhoP/PhoQ, el sistema de quorum sensing AhyI/AhyR, o el complex piruvat deshidrogenasa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizontal gene transfer between commensal and pathogenic Neisseriae is the mechanism proposed to explain how pathogenic species acquire altered portions of the penA gene, which encodes penicillin binding protein 2. These changes resulted in a moderately penicillin-resistant phenotype in the meningococci, whose frequency of isolation in Spain increased at the end of the 1980s. Little has been published about the possibility of this gene transfer in nature or about its simulation in the laboratory. We designed a simple microcosm, formed by solid and liquid media, that partially mimics the upper human respiratory tract. In this microcosm, penicillin-resistant commensal strains and the fully susceptible meningococcus were co-cultivated. The efficiency of gene transfer between the strains depended on the phase of bacterial growth and the conditions of culture. Resistance of penicillin was acquired in different steps irrespective of the source of the DNA. The presence of DNase in the medium had no effect on gene transfer, but it was near zero when nicked DNA was used. Cell-to-cell contact or membrane blebs could explain these results. The analysis of sequences of the transpeptidase domain of PBP2 from transformants, and from donor and recipient strains demonstrated that the emergence of moderately resistant transformants was due to genetic exchange between the co-cultivated strains. Finally, mechanisms other than penA modification could be invoked to explain decreased susceptibility

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infections. Thus, current levels of resistance to penicillin and cephalosporin seem to have little, if any, clinical relevance in nonmeningeal infections (e.g., pneumonia or bacteremia). On the contrary, numerous clinical failures have been reported in patients with pneumococcal meningitis caused by strains with MICs ≥ 0.12 μg/ml, and penicillin should never be used in pneumococcal meningitis except when the strain is known to be fully susceptible to this drug. Today, therapy for pneumococcal meningitis should mainly be selected on the basis of susceptibility to cephalosporins, and most patients may currently be treated with high-dose cefotaxime (±) vancomycin, depending on the levels of resistance in the patient's geographic area. In this review, we present a practical approach, based on current levels of antibiotic resistance, for treating the most prevalent pneumococcal infections. However, it should be emphasized that the most appropriate antibiotic therapy for infections caused by resistant pneumococci remains controversial, and comparative, randomized studies are urgently needed to clarify the best antibiotic therapy for these infections

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizontal gene transfer between commensal and pathogenic Neisseriae is the mechanism proposed to explain how pathogenic species acquire altered portions of the penA gene, which encodes penicillin binding protein 2. These changes resulted in a moderately penicillin-resistant phenotype in the meningococci, whose frequency of isolation in Spain increased at the end of the 1980s. Little has been published about the possibility of this gene transfer in nature or about its simulation in the laboratory. We designed a simple microcosm, formed by solid and liquid media, that partially mimics the upper human respiratory tract. In this microcosm, penicillin-resistant commensal strains and the fully susceptible meningococcus were co-cultivated. The efficiency of gene transfer between the strains depended on the phase of bacterial growth and the conditions of culture. Resistance of penicillin was acquired in different steps irrespective of the source of the DNA. The presence of DNase in the medium had no effect on gene transfer, but it was near zero when nicked DNA was used. Cell-to-cell contact or membrane blebs could explain these results. The analysis of sequences of the transpeptidase domain of PBP2 from transformants, and from donor and recipient strains demonstrated that the emergence of moderately resistant transformants was due to genetic exchange between the co-cultivated strains. Finally, mechanisms other than penA modification could be invoked to explain decreased susceptibility

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in north-eastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future stream flows. The largest reduction (22-48% for 2076-2100) of stream flows is expected in the headwaters of the two wettest catchments, while lower decreases (22-32% for 2076-2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in stream flow, 50% and 34%, respectively (2076-2100). Thus, ecological flows might be noticeably impacted by climate change in the catchments, especially in the headwaters of those wet catchments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Yeasts are responsible for several traits in fermented beverages, including wine and beer, and their genetic manipulation is often necessary to improve the quality of the fermentation product. Improvement of wild-type strains of Saccharomyces cerevisiae and Saccharomyces pastorianus is difficult due to their homothallic character and variable ploidy level. Homothallism is determined by the HO gene in S. cerevisiae and the Sc-HO gene in S. pastorianus. In this work, we describe the construction of an HO disruption vector (pDHO) containing an HO disruption cassette and discuss its use in generating heterothallic yeast strains from homothallic Saccharomyces species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Yeasts are responsible for several traits in fermented beverages, including wine and beer, and their genetic manipulation is often necessary to improve the quality of the fermentation product. Improvement of wild-type strains of Saccharomyces cerevisiae and Saccharomyces pastorianus is difficult due to their homothallic character and variable ploidy level. Homothallism is determined by the HO gene in S. cerevisiae and the Sc-HO gene in S. pastorianus. In this work, we describe the construction of an HO disruption vector (pDHO) containing an HO disruption cassette and discuss its use in generating heterothallic yeast strains from homothallic Saccharomyces species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.