42 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.
Resumo:
This paper tries to resolve some of the main shortcomings in the empirical literature of location decisions for new plants, i.e. spatial effects and overdispersion. Spatial effects are omnipresent, being a source of overdispersion in the data as well as a factor shaping the functional relationship between the variables that explain a firm’s location decisions. Using Count Data models, empirical researchers have dealt with overdispersion and excess zeros by developments of the Poisson regression model. This study aims to take this a step further, by adopting Bayesian methods and models in order to tackle the excess of zeros, spatial and non-spatial overdispersion and spatial dependence simultaneously. Data for Catalonia is used and location determinants are analysed to that end. The results show that spatial effects are determinant. Additionally, overdispersion is descomposed into an unstructured iid effect and a spatially structured effect. Keywords: Bayesian Analysis, Spatial Models, Firm Location. JEL Classification: C11, C21, R30.
Resumo:
This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.
Resumo:
We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.
Resumo:
This chapter highlights the problems that structural methods and SVAR approaches have when estimating DSGE models and examining their ability to capture important features of the data. We show that structural methods are subject to severe identification problems due, in large part, to the nature of DSGE models. The problems can be patched up in a number of ways but solved only if DSGEs are completely reparametrized or respecified. The potential misspecification of the structural relationships give Bayesian methods an hedge over classical ones in structural estimation. SVAR approaches may face invertibility problems but simple diagnostics can help to detect and remedy these problems. A pragmatic empirical approach ought to use the flexibility of SVARs against potential misspecificationof the structural relationships but must firmly tie SVARs to the class of DSGE models which could have have generated the data.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.
Resumo:
Asynchronous exponential growth has been extensively studied in population dynamics. In this paper we find out the asymptotic behaviour in a non-linear age-dependent model which takes into account sexual reproduction interactions. The main feature of our model is that the non-linear process converges to a linear one as the solution becomes large, so that the population undergoes asynchronous growth. The steady states analysis and the corresponding stability analysis are completely made and are summarized in a bifurcation diagram according to the parameter R0. Furthermore the effect of intraspecific competition is taken into account, leading to complex dynamics around steady states.
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
This paper provides a method to estimate time varying coefficients structuralVARs which are non-recursive and potentially overidentified. The procedureallows for linear and non-linear restrictions on the parameters, maintainsthe multi-move structure of standard algorithms and can be used toestimate structural models with different identification restrictions. We studythe transmission of monetary policy shocks and compare the results with thoseobtained with traditional methods.
Resumo:
This paper investigates what has caused output and inflation volatility to fall in the USusing a small scale structural model using Bayesian techniques and rolling samples. Thereare instabilities in the posterior of the parameters describing the private sector, the policyrule and the standard deviation of the shocks. Results are robust to the specification ofthe policy rule. Changes in the parameters describing the private sector are the largest,but those of the policy rule and the covariance matrix of the shocks explain the changes most.
Resumo:
This paper introduces a mixture model based on the beta distribution, without preestablishedmeans and variances, to analyze a large set of Beauty-Contest data obtainedfrom diverse groups of experiments (Bosch-Domenech et al. 2002). This model gives a bettert of the experimental data, and more precision to the hypothesis that a large proportionof individuals follow a common pattern of reasoning, described as iterated best reply (degenerate),than mixture models based on the normal distribution. The analysis shows thatthe means of the distributions across the groups of experiments are pretty stable, while theproportions of choices at dierent levels of reasoning vary across groups.
Resumo:
We explore the determinants of usage of six different types of health care services, using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number of models for univariate count data, including semiparametric, semi-nonparametric and finite mixture models. We find that the complexity of the model that is required to fit the data well depends upon the way in which the data is pooled across sexes and over time, and upon the characteristics of the usage measure. Pooling across time and sexes is almost always favored, but when more heterogeneous data is pooled it is often the case that a more complex statistical model is required.
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Resumo:
This paper investigates the relationship between monetary policy and the changes experienced by the US economy using a small scale New-Keynesian model. The model is estimated with Bayesian techniques and the stability of policy parameter estimates and of the transmission of policy shocks examined. The model fits well the data and produces forecasts comparable or superior to those of alternative specifications. The parameters of the policy rule, the variance and the transmission of policy shocks have been remarkably stable. The parameters of the Phillips curve and of the Euler equations are varying.