71 resultados para Astronomy and Astrophysics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Understanding how blogs can support collaborative learning is a vital concern for researchers and teachers. This paper explores how blogs may be used to support Secondary Education students’ collaborative interaction and how such an interaction process can promote the creation of a Community of Inquiry to enhance critical thinking and meaningful learning. We designed, implemented and evaluated a science case-based project in which fifteen secondary students participated. Students worked in the science blogging project during 4 months. We asked students to be collaboratively engaged in purposeful critical discourse and reflection in their blogs in order to solve collectively science challenges and construct meaning about topics related to Astronomy and Space Sciences. Through student comments posted in the blog, our findings showed that the blog environment afforded the construction of a Community of Inquiry and therefore the creation of an effective online collaborative learning community. In student blog comments, the three presences for collaborative learning took place: cognitive, social, and teaching presence. Moreover, our research found a positive correlation among the three presences –cognitive, social and teaching– of the Community of Inquiry model with the level of learning obtained by the students. We discuss a series of issues that instructors should consider when blogs are incorporated into teaching and learning. We claim that embedded scaffolds to help students to argue and reason their comments in the blog are required to foster blog-supported collaborative learning.
Resumo:
In an attempt to increase the number of known microquasars, Paredes et al. (2002) have presented a long-term project focused on the search for new objects of this type. They performed a cross-identification between X-ray and radio catalogs under very restrictive selection criteria for sources with |b|<5 degrees, and obtained a sample of 13 radio-emitting X-ray sources. Follow-up observations of 6 of these sources with the VLA provided accurate coordinates, which were used to discover optical counterparts for all of them. We have observed these six sources with the EVN and MERLIN at 5 GHz. Five of the six objects have been detected and imaged, presenting different morphologies: one source has a two-sided jet, three sources have one-sided jets, and one source is compact. With all the presently available information, we conclude that two of the sources are promising microquasar candidates in our Galaxy.
Resumo:
The possible associations between the microquasars LS 5039 and LS I +61 303 and the EGRET sources 3EG J1824-1514 and 3EG J0241+6103 suggest that microquasars could also be sources of high-energy gamma-rays. In this work, we present a detailed numerical inverse Compton (IC) model, based on a microquasar scenario, that reproduces the high-energy gamma-ray spectra and variability observed by EGRET for the mentioned sources. Our model considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet that interact through IC scattering with both the radiation and the magnetic fields.
Resumo:
We describe the motivation, design, and implementation of the CORNISH survey, an arcsecondresolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern SpitzerGLIMPSE I region covering 10°
Resumo:
Context.LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims.We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods.New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of H EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results.XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density () is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The H EW shows yearly variations of 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions.2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the seems to imply that either the X-ray emitter is located at 1012 cm from the compact object, or the density in the system is 3 to 27 times smaller than that predicted by a spherical symmetric wind model. We suggest that the multiwavelength non-thermal emission of LS 5039 is related to the observed extended radio jets and is unlikely to be produced inside the binary system.
Resumo:
The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4$\sigma$ location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood $> 10$) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail.
Resumo:
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.
Resumo:
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.
Resumo:
Context. There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. Aims. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Methods. We have performed Giant Metrewave Radio Telescope observations at 610 MHz and 1.4 GHz to obtain a deep, low-frequency radio image of the region surrounding HESS J1858+020. We analysed archival radio, infrared, and X-ray data as well. This observational information, combined with molecular data, catalogue sources, and a nearby Fermi gamma-ray detection of unidentified origin, are combined to explore possible counterparts to the very high energy source. Results. We provide with a deep radio image of a supernova remnant that might be related to the GeV and TeV emission in the region. We confirm the presence of an H ii region next to the supernova remnant and coincident with molecular emission. A potential region of star formation is also identified. We identify several radio and X-ray sources in the surroundings. Some of these sources are known planetary nebulae, whereas others may be non-thermal extended emitters and embedded young stellar objects. Three old, background Galactic pulsars also neighbour HESS J1858+020 along the line of sight. Conclusions. The region surrounding HESS J1858+020 is rich in molecular structures and non-thermal objects that may potentially be linked to this unidentified very high energy source. In particular, a supernova remnant interacting with nearby molecular clouds may be a good candidate, but a star forming region, or a non-thermal radio source of yet unclear nature, may also be behind the gamma-ray source. The neighbouring pulsars, despite being old and distant, cannot be discarded as candidates. Further observational studies are needed, however, to narrow the search for a counterpart to the HESS source.
Resumo:
Microquasars are promising candidates to emit high-energy gamma-rays. Moreover, statistical studies show that variable EGRET sources at low galactic latitudes could be associated with the inner spiral arms. The variable nature and the location in the Galaxy of the high-mass microquasars, concentrated in the galactic plane and within 55 degrees from the galactic center, give to these objects the status of likely counterparts of the variable low-latitude EGRET sources. We consider in this work the two most variable EGRET sources at low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model to explain the EGRET data in consistency with the observations at lower energies (from radio frequencies to soft gamma-rays) within the EGRET error box.
Resumo:
The CORNISH project is the highest resolution radio continuum survey of the Galactic plane to date. It is the 5 GHz radio continuum part of a series of multi-wavelength surveys that focus on the northern GLIMPSE region (10° < l < 65°), observed by the Spitzer satellite in the mid-infrared. Observations with the Very Large Array in B and BnA configurations have yielded a 1.''5 resolution Stokes I map with a root mean square noise level better than 0.4 mJy beam 1. Here we describe the data-processing methods and data characteristics, and present a new, uniform catalog of compact radio emission. This includes an implementation of automatic deconvolution that provides much more reliable imaging than standard CLEANing. A rigorous investigation of the noise characteristics and reliability of source detection has been carried out. We show that the survey is optimized to detect emission on size scales up to 14'' and for unresolved sources the catalog is more than 90% complete at a flux density of 3.9 mJy. We have detected 3062 sources above a 7σ detection limit and present their ensemble properties. The catalog is highly reliable away from regions containing poorly sampled extended emission, which comprise less than 2% of the survey area. Imaging problems have been mitigated by down-weighting the shortest spacings and potential artifacts flagged via a rigorous manual inspection with reference to the Spitzer infrared data. We present images of the most common source types found: H II regions, planetary nebulae, and radio galaxies. The CORNISH data and catalog are available online at http://cornish.leeds.ac.uk.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.