60 resultados para Assembled Synthetic Proteins
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The objective of this study was to evaluate the effect of vaccination against GnRH on performance traits, pig behaviour and acute phase proteins. A total of 120 pigs (36 non-castrated males, NCM; 36 males to be vaccinated, IM; 24 castratedmales, CM; and 24 females, FE)were controlled in groups of 12 in pens with feeding stations allowing the recording of individual feed intake. The two vaccinations (Improvac®) were applied at a mean age of 77 and 146 days. All pigswere individually weighed every 3 weeks from the mean ages of 74 to 176 days and backfat thickness (BT) and loinmuscle depth (LD) were also recorded ultrasonically. Twelve group-housed pigs for each treatment were video recorded during 2 consecutive days at weeks 9, 11, 20, 21, 23 and 25 of age to score the number of inactive or active pigs in each treatment group by scan sampling. Aggressive behaviour by the feeder and away from the feeder, and mounting behaviour was also scored by focal sampling. Blood samples from 12 NCM, 12 CM and 12 IM were taken to determine the concentration of circulating acute phase protein Pig-MAP atweeks 1, 2, 4, 11, 13, 21 and 25 of age. After slaughter, the number of skin lesions on the left half carcasswas scored. IMpresented overall a higher growth rate and daily feed intake compared to NCM (Pb0.05),whereas their feed conversion ratios did not differ significantly. In comparison with CM, IM presented a better feed conversion ratio (Pb0.05), since their overall dailyweight gaindid not differ significantly, butIM ate less. Final leanmeat percentage of IM and CM was lower compared to that of NCM (Pb0.05). Activity, mounting and aggressive behaviour of NCM was higher than in IM, CM and FE after the second vaccination. Pig-MAP concentrationswere significantly elevated just after surgical castrationand after bothadministrations of the vaccine (Pb0.05), but concentrations subsequently decreased throughout time. Skin lesions of NCM were significantly higher compared to that of IM and FE (Pb0.05). The effects of vaccination were especially remarkable after the second dose, when the higher feed intake and lower activity of IM compared to NCMmight result in higher final body weight and more fat. Results from this study indicate that some welfare aspects such as a reduced aggression and mounting behaviour may be improved by vaccination against GnRH, together with productive benefits like adequate feed conversion ratio and daily weight gain.
Resumo:
During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.
Resumo:
Report for the scientific sojourn carried out at the Cell Biology and Biophysics Unit from the National Institutes of Health, from 2010 to 2012.
Resumo:
The Computational Biophysics Group at the Universitat Pompeu Fabra (GRIB-UPF) hosts two unique computational resources dedicated to the execution of large scale molecular dynamics (MD) simulations: (a) the ACMD molecular-dynamics software, used on standard personal computers with graphical processing units (GPUs); and (b) the GPUGRID. net computing network, supported by users distributed worldwide that volunteer GPUs for biomedical research. We leveraged these resources and developed studies, protocols and open-source software to elucidate energetics and pathways of a number of biomolecular systems, with a special focus on flexible proteins with many degrees of freedom. First, we characterized ion permeation through the bactericidal model protein Gramicidin A conducting one of the largest studies to date with the steered MD biasing methodology. Next, we addressed an open problem in structural biology, the determination of drug-protein association kinetics; we reconstructed the binding free energy, association, and dissaciociation rates of a drug like model system through a spatial decomposition and a Makov-chain analysis. The work was published in the Proceedings of the National Academy of Sciences and become one of the few landmark papers elucidating a ligand-binding pathway. Furthermore, we investigated the unstructured Kinase Inducible Domain (KID), a 28-peptide central to signalling and transcriptional response; the kinetics of this challenging system was modelled with a Markovian approach in collaboration with Frank Noe’s group at the Freie University of Berlin. The impact of the funding includes three peer-reviewed publication on high-impact journals; three more papers under review; four MD analysis components, released as open-source software; MD protocols; didactic material, and code for the hosting group.
Resumo:
Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.Conclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Selenoproteins are a diverse group of proteinsusually misidentified and misannotated in sequencedatabases. The presence of an in-frame UGA (stop)codon in the coding sequence of selenoproteingenes precludes their identification and correctannotation. The in-frame UGA codons are recodedto cotranslationally incorporate selenocysteine,a rare selenium-containing amino acid. The developmentof ad hoc experimental and, more recently,computational approaches have allowed the efficientidentification and characterization of theselenoproteomes of a growing number of species.Today, dozens of selenoprotein families have beendescribed and more are being discovered in recentlysequenced species, but the correct genomic annotationis not available for the majority of thesegenes. SelenoDB is a long-term project that aims toprovide, through the collaborative effort of experimentaland computational researchers, automaticand manually curated annotations of selenoproteingenes, proteins and SECIS elements. Version 1.0 ofthe database includes an initial set of eukaryoticgenomic annotations, with special emphasis on thehuman selenoproteome, for immediate inspectionby selenium researchers or incorporation into moregeneral databases. SelenoDB is freely available athttp://www.selenodb.org.
Resumo:
Recent magnetotransport experiments of holes in InGaAs quantum dots [D. Reuter, P. Kailuweit, A. D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, and J. C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by employing a multiband k¿p Hamiltonian, which considers the interaction between heavy hole and light hole subbands explicitly. No need of invoking an incomplete energy shell filling is required within this model. The crucial role we ascribe to the heavy hole-light hole interaction is further supported by one-band local-spin-density functional calculations, which show that Coulomb interactions do not induce any incomplete hole shell filling and therefore cannot account for the experimental magnetic field dispersion.
Resumo:
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories.
Resumo:
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.
Resumo:
An algorithm for computing correlation filters based on synthetic discriminant functions that can be displayed on current spatial light modulators is presented. The procedure is nondivergent, computationally feasible, and capable of producing multiple solutions, thus overcoming some of the pitfalls of previous methods.
Synthesis, structure, and magnetic studies on self-assembled BiFeO3-CoFe2O4 nanocomposite thin films
Resumo:
Self-assembled (0.65)BiFeO3-(0.35)CoFe2O4 (BFO-CFO) nanostructures were deposited on SrTiO3 (001) and (111) substrates by pulsed laser deposition at various temperatures from 500 to 800°C. The crystal phases and the lattice strain for the two different substrate orientations have been determined and compared. The films grow epitaxial on both substrates but separation of the spinel and perovskite crystallites, without parasitic phases, is only obtained for growth temperatures of around 600-650°C. The BFO crystallites are out-of-plane expanded on STO(001), whereas they are almost relaxed on (111). In contrast, CFO crystallites grow out-of-plane compressed on both substrates. The asymmetric behavior of the cell parameters of CFO and BFO is discussed on the basis of the role of the epitaxial stress caused by the substrate and the spinel-perovskite interfacial stress. It is concluded that interfacial stress dominates the elastic properties of CFO crystallites and thus it may play a fundamental on the interface magnetoelectric coupling in these nanocomposites.
Resumo:
The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.