9 resultados para Aortic aneurysms

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted.Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with thecontinuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods: A workshopon CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT) Teaching Course,Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse softwaredeveloped within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performancewas assessed on a scale of 1 to 4 and, compared with experts’ performance. Results: Current dilemmas in the management ofunruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showedinterest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4) which was 63% (range 0–100%) of an expert user. Conclusions: Although participants showed a manifest interest in CFD, there was a clear lack ofawareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More effortstherefore are required to enhance understanding of the clinicians in the subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, some of the visionary concepts behind the virtual physiological human began to be demonstrated on various clinical domains, showing great promise for improving healthcare management. In the current work, we provide an overview of image- and biomechanics-based techniques that, when put together, provide a patient-specific pipeline for the management of intracranial aneurysms. The derivation and subsequent integration of morphological, morphodynamic, haemodynamic and structural analyses allow us to extract patient-specific models and information from which diagnostic and prognostic descriptors can be obtained. Linking such new indices with relevant clinical events should bring new insights into the processes behind aneurysm genesis, growth and rupture. The development of techniques for modelling endovascular devices such as stents and coils allows the evaluation of alternative treatment scenarios before the intervention takes place and could also contribute to the understanding and improved design of more effective devices. A key element to facilitate the clinical take-up of all these developments is their comprehensive validation. Although a number of previously published results have shown the accuracy and robustness of individual components, further efforts should be directed to demonstrate the diagnostic and prognostic efficacy of these advanced tools through large-scale clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D X-ray reconstruc-tion angiography (3DRA) and time of °ight magnetic resonance angiography (TOF-MRA) images available in the clinical routine.Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical centers, each using di®erent imaging equipment. Evaluation included qualitative and quantitative analyses ofthe segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: iso-intensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an inter-modality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE di®ered from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE, respectively) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatabilityof GAR was superior to manual measurements and ISE. The inter-modality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Individual rupture risk assessment of intracranial aneurysms is a major issue in the clinical management of asymptomatic aneurysms. Aneurysm rupture occurs when wall tension exceeds the strength limit of the wall tissue. At present, aneurysmal wall mechanics are poorly understood and thus, risk assessment involving mechanical properties is inexistent. Aneurysm computational hemodynamics studies make the assumption of rigid walls, an arguable simplification. We therefore aim to assess mechanical properties of ruptured and unruptured intracranial aneurysms in order to provide the foundation for future patient-specific aneurysmal risk assessment. This work also challenges some of the currently held hypotheses in computational flow hemodynamics research. Methods: A specific conservation protocol was applied to aneurysmal tissues following clipping and resection in order to preserve their mechanical properties. Sixteen intracranial aneurysms (11 female, 5 male) underwent mechanical uniaxial stress tests under physiological conditions, temperature, and saline isotonic solution. These represented 11 unruptured and 5 ruptured aneurysms. Stress/strain curves were then obtained for each sample, and a fitting algorithm was applied following a 3-parameter (C(10), C(01), C(11)) Mooney-Rivlin hyperelastic model. Each aneurysm was classified according to its biomechanical properties and (un)rupture status.Results: Tissue testing demonstrated three main tissue classes: Soft, Rigid, and Intermediate. All unruptured aneurysms presented a more Rigid tissue than ruptured or pre-ruptured aneurysms within each gender subgroup. Wall thickness was not correlated to aneurysmal status (ruptured/unruptured). An Intermediate subgroup of unruptured aneurysms with softer tissue characteristic was identified and correlated with multiple documented risk factors of rupture. Conclusion: There is a significant modification in biomechanical properties between ruptured aneurysm, presenting a soft tissue and unruptured aneurysms, presenting a rigid material. This finding strongly supports the idea that a biomechanical risk factor based assessment should be utilized in the to improve the therapeutic decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantification of wall motion in cerebral aneurysms is becoming important owing to its potential connection to rupture, and as a way to incorporate the effects of vascular compliance in computational fluid dynamics (CFD) simulations.Most of papers report values obtained with experimental phantoms, simulated images, or animal models, but the information for real patients is limited. In this paper, we have combined non-rigid registration (IR) with signal processing techniques to measure pulsation in real patients from high frame rate digital subtraction angiography (DSA). We have obtained physiological meaningful waveforms with amplitudes in therange 0mm-0.3mm for a population of 18 patients including ruptured and unruptured aneurysms. Statistically significant differences in pulsation were found according to the rupture status, in agreement with differences in biomechanical properties reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological descriptors are practical and essential biomarkers for diagnosis andtreatment selection for intracranial aneurysm management according to the current guidelinesin use. Nevertheless, relatively little work has been dedicated to improve the three-dimensionalquanti cation of aneurysmal morphology, automate the analysis, and hence reduce the inherentintra- and inter-observer variability of manual analysis. In this paper we propose a methodologyfor the automated isolation and morphological quanti cation of saccular intracranial aneurysmsbased on a 3D representation of the vascular anatomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The purpose of the present contribution is to perform a detailed anatomic and virtual reality three-dimensional stereoscopic study in order to test the effectiveness of the extended endoscopic endonasal approaches for selected anterior and posterior circulation aneurysms. Methods. The study was divided in two main steps: (1) simulation step, using a dedicated Virtual Reality System (Dextroscope, Volume Interactions); (2) dissection step, in which the feasibility to reach specific vascular territory via the nose was verified in the anatomical laboratory. Results. Good visualization and proximal and distal vascular control of the main midline anterior and posterior circulation territory were achieved during the simulation step as well as in the dissection step (anterior communicating complex, internal carotid, ophthalmic, superior hypophyseal, posterior cerebral and posterior communicating, basilar, superior cerebellar, anterior inferior cerebellar, vertebral, and posterior inferior cerebellar arteries). Conclusion. The present contribution is intended as strictly anatomic study in which we highlighted some specific anterior and posterior circulation aneurysms that can be reached via the nose. For clinical applications of these approaches, some relevant complications, mainly related to the endonasal route, such as proximal and distal vascular control, major arterial bleeding, postoperative cerebrospinal fluid leak, and olfactory disturbances must be considered

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of abdominal aortic aneurysm (AAA) has shifted from the exposure of the aorta artery in an open repair technique to a small groin cut in an endovascular repair. Recently, a percutaneous access for endovascular repair has appeared. This new technique aims to minimize the complications of the common femoral artery exposure, the patient discomfort and the length of hospitalizationObjectives: To compare the proportion of discharged patients within the first 48 postoperative hours of two common femoral artery accesses for endovascular repair of AAA: the open exposure technique and the percutaneous technique. Secondary objectives include to evaluate the total procedure time, the femoral access complications, the need for extra analgesia and the patient satisfaction and groin discomfort of the two techniquesDesign: Randomized controlled trial conducted between 2014 and 2017Participants: Patients diagnosed with abdominal aortic aneurysm with elective endovascular repair indication