8 resultados para Antiproliferative activity
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
The first total synthesis of the indole alkaloids ()-aplicyanins A, B and E, plus seventeen analogs, all in racemic form is reported. Modifications to the parent compound included changing the number of bromine substituents on the indole, the groups on the indole nitrogen (H, Me or OMe), and/or the oxidation level of the heterocyclic core tetrahydropyrimidine. Each compound was screened against three human tumor cell lines, and fourteen of the newly synthesized compounds showed considerable cytotoxicity. The assay results were used to establish structure-activity relationships. These results suggest that the acetyl group moiety on the imine nitrogen, and the bromine at position 5 of the indole, are both critical to activity.
Resumo:
Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η6-bip)Os(4-CO2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η6-p-cym)RuCl(dap)]+ (p-cym = p-cymene) (5), and [(η6-p-cym)RuCl(imidazole-CO2H)(PPh3)]+ (6), were synthesized by using a solid-phase approach. Conjugates 35 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC50 = 63 ± 2 μM in MCF-7 cells and IC50 = 26 ± 3 μM in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC50 = 45 ± 2.6 μM in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorptionionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycinruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycinruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycinruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycinruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Department of Biological Science a la University of Lincoln, a la Gran Bretanya, entre octubre i desembre del 2006. L'objectiu del present assaig va ser desciure les respostes antioxidants d'estrès en gossos sotmesos a cirurgia electiva, en condicions de pràctica clínica normals, durant les fases de preoperatori i postoperatori.Setze gossos van ser sotmesos a orquiectomia o ovariohisterectomia electives, utilitzant un protocol quirúrgic estàndard. Durant les fases preoperatoria i postoperatoria, cada animal va ser confinat a la Unitat de Cures Intensives, temps durant el qual es va estudiar la seva resposta antioxidant. Els valors obtinguts a diferents temps van ser comparats amb el valor basal, que s'havia obtingut del mateix animal estant aquest en el seu ambient habitual. No es van detectar variacions significants causades per l'estrès perioperatori. Els valors màxims es van observar durant la fase preoperatoria, just després que l'animal fós confinat a la Unitat de Cures Intensives, moment en el que l'estrès percebut era degut a les amenaces psicològiques de una àrea restringida i de la manipulació per persones desonegudes. L'abscència de variacions significants podrien ser degudes al sistema i el temps d'emmagatzement de les mostres. En humana s'han descrit les alteracions en l'activitat dels antioxidants sèrics després d'un mes d'emmagatzematent. Per definir l'estabilitat, després de la recollida de mostres, de l'activitat dels antioxidants en sèrum de gos és necessari realitzar més estudis.