12 resultados para Antimicrobial stewardship
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1–2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides
Resumo:
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Resumo:
Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect
Resumo:
The antibacterial and antifungal activity of 82 marine macroalgae (18 Chlorophyceae, 25 Phaeophyceae and 39 Rhodophyceae) was studied to evaluate their potential for being used as natural preservatives in the cosmetic industry. The bioactivity was analysed from crude extracts of fresh and lyophilised samples against three Gram-positive bacteria, two Gram-negative bacteria and one yeast using the agar diffusion technique. The samples were collected seasonally from Mediterranean and Atlantic coasts of the Iberian Peninsula. Of the macroalgae analysed, 67% were active against at least one of the six test microorganisms. The highest percentage of active taxa was found in Phaeophyceae (84%), followed by Rhodophyceae (67%) and Chlorophyceae (44%). Nevertheless, red algae had both the highest values and the broadest spectrum of bioactivity. In particular, Bonnemaisonia asparagoides, Bonnemaisonia hamifera, Asparagopsis armata and Falkenbergia rufolanosa (Bonnemaisoniales) were the most active taxa. Bacillus cereus was the most sensitive test microorganism and Pseudomonas aeruginosa was the most resistant. The highest percentages of active taxa from Phaeophyceae and Rhodophyceae were found in autumn, whereas they were found in summer for Chlorophyceae.
Resumo:
The antimicrobial effect against L. monocytogenes of biodegradable films (alginate, zein and polyvinyl alcohol) containing enterocins was investigated. Survival of the pathogen was studied by means of challenge tests performed at 6 °C during 8 and 29 days, for air-packed and vacuum-packed sliced cooked ham, respectively. Air packaging was tested with two concentrations of enterocins (200 and 2000 AU/cm2). Control air-packed cooked ham showed an increase of L. monocytogenes from 104 to 107 CFU/g after 8 days. By contrast, packaging with antimicrobial films effectively slowed down the pathogen's growth, leading to final counts lower than in control lots. Air-packaging with alginate films containing 2000 AU/cm2 of enterocins effectively controlled L. monocytogenes for 8 days. An increase of only 1 log unit was observed in zein and polyvinyl alcohol lots at the same enterocin concentration. Vacuum packaging with films containing enterocins (2000 AU/cm2) also delayed the growth of the pathogen. No increase from inoculated levels was observed during 15 days in antimicrobial alginate films. After 29 days of storage, the lowest counts were obtained in samples packed with zein and alginate films containing enterocins, as well as with zein control films. The most effective treatment for controlling L. monocytogenes during 6 °C storage was vacuum-packaging of sliced cooked ham with alginate films containing 2000 AU/cm2 of enterocins. From the results obtained it can concluded that antimicrobial packaging can improve the safety of sliced cooked ham by delaying and reducing the growth of L. monocytogenes.
Resumo:
The efficiency of combining high-pressure processing (HPP) and active packaging technologies to control Listeria monocytogenes growth during the shelf life of artificially inoculated cooked ham was assessed. Three lots of cooked ham were prepared: control, packaging with alginate films, and packaging with antimicrobial alginate films containing enterocins. After packaging, half of the samples were pressurized. Sliced cooked ham stored at 6 °C experienced a quick growth of L. monocytogenes. Both antimicrobial packaging and pressurization delayed the growth of the pathogen. However, at 6 °C the combination of antimicrobial packaging and HPP was necessary to achieve a reduction of inoculated levels without recovery during 60 days of storage. Further storage at 6 °C of pressurized antimicrobial packed cooked ham resulted in L. monocytogenes levels below the detection limit (day 90). On the other hand, storage at 1 °C controlled the growth of the pathogen until day 39 in non-pressurized ham, while antimicrobial packaging and storage at 1 °C exerted a bacteriostatic effect for 60 days. All HPP lots stored at 1 °C led to counts <100 CFU/g at day 60. Similar results were observed when combining both technologies. After a cold chain break no growth of L. monocytogenes was observed in pressurized ham packed with antimicrobial films, showing the efficiency of combining both technologies.
Resumo:
Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.
Resumo:
Regular use of mouth rinses modifies the oral habitat, since bacterial populations are submitted to a high selective pressure during the treatment exercised by the active presence of the disinfectant. Mostly mouth rinses are based on the antibacterial effect of Chlorhexidine, Triclosan, essential oils and other antibacterials although other pharmaceutical characteristics can also affect their effectiveness. In this paper we compare"in vitro" the antibacterial effect of different oral rinsing solutions. Minimal Inhibitory Concentrations (MIC) and Minimal Bactericidal Concentrations (MBC) were determined as well as the kinetics of bacterial death in the presence of letal concentrations of the mouth rinses. MIC values expressed as Maximal Inhibitory Dilution (MID) of the mouth rinse ranged from 1 to 1/2048 depending on the microorganism and product, whereas Minimal Biocidal Concentration (MBC), expressed as Maximal Biocidal Dilution (MBD) ranged from 1 to 1/1024, being in general one dilution less than MIC. Maximal Biocidal Dilution is a good tool to measure the actual efficiency of mouth washing solutions. However, kinetics of death seems to be better in our work killing curves demonstrate that bacterial populations are mostly eliminated during the first minute after the contact of bacterial suspension and the mouth-washing solution. In all tested bacterial species mouth-washing solutions tested were able to reduce until suspension treated except 1 and 5
Resumo:
Salmonella is distributed worldwide and is a pathogen of economic and public health importance. As a multi-host pathogen with a long environmental persistence, it is a suitable model for the study of wildlife-livestock interactions. In this work, we aim to explore the spill-over of Salmonella between free-ranging wild boar and livestock in a protected natural area in NE Spain and the presence of antimicrobial resistance. Salmonella prevalence, serotypes and diversity were compared between wild boars, sympatric cattle and wild boars from cattle-free areas. The effect of age, sex, cattle presence and cattle herd size on Salmonella probability of infection in wild boars was explored by means of Generalized Linear Models and a model selection based on the Akaike’s Information Criterion. Prevalence was higher in wild boars co-habiting with cattle (35.67%, CI 95% 28.19–43.70) than in wild boar from cattle-free areas (17.54%, CI 95% 8.74–29.91). Probability of a wild boar being a Salmonella carrier increased with cattle herd size but decreased with the host age. Serotypes Meleagridis, Anatum and Othmarschen were isolated concurrently from cattle and sympatric wild boars. Apart from serotypes shared with cattle, wild boars appear to have their own serotypes, which are also found in wild boars from cattle-free areas (Enteritidis, Mikawasima, 4:b:- and 35:r:z35). Serotype richness (diversity) was higher in wild boars co-habiting with cattle, but evenness was not altered by the introduction of serotypes from cattle. The finding of a S. Mbandaka strain resistant to sulfamethoxazole, streptomycin and chloramphenicol and a S. Enteritidis strain resistant to ciprofloxacin and nalidixic acid in wild boars is cause for public health concern.
Resumo:
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
Resumo:
Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants