14 resultados para Anti-cancer
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.Conclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.
Resumo:
Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer"s disease. The type of multi‐targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health‐promoting extra virgin olive oil (EVOO), might constitute a new family of plant‐produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound"s structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS‐predicted BAS of substances based on thousands of"mechanism‐ effect" and"effect‐mechanism" relationships, we illuminate hypothesis‐generating pharmacological effects, mechanisms of action, and targets that might underlie the anti‐aging/anti‐cancer activities of the gerosuppressant EVOO oleuropeins.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Resumo:
The dose makes the poison, the common motto of toxicology first expressed by Paracelsus more than 400 years ago, may effectively serve to guide potential applications for metformin and related biguanides in oncology. While Paracelsus' law for the dose-response effect has been commonly exploited for the use of some anti-cancer drugs at lower doses in non-neoplastic diseases (e.g., methotrexate), the opposite scenario also holds true; in other words, higher doses of non-oncology drugs, such as anti-diabetic biguanides, might exert direct anti-neoplastic effects. Here, we propose that, as for any drug, there is a dose range for biguanides that is without any effect, one corresponding to"diabetobiguanides" with a pharmacological effect (e.g., insulin sensitization in type 2 diabetes, prevention of insulin-dependent carcinogenesis, indirect inhibition of insulin and growth factor-dependent cancer growth) but with minimal toxicity and another corresponding to 'oncobiguanides' with pharmacological (i.e., direct and strong anticancer activity against cancer cells) as well as toxic effects. Considering that biguanides demonstrate a better safety profile than most oncology drugs in current use, we should contemplate the possibility of administering biguanides through non-conventional routes (e.g., inhaled for carcinomas of the lung, topical for skin cancers, intravenous as an adjunctive therapy, rectal suppositories for rectal cancer) to unambiguously investigate the therapeutic value of high-dose transient biguanide exposure in cancer. Perhaps then, the oncobiguanides, as we call them here, could be viewed as a mechanistically different type of anti-cancer drugs employed at doses notably higher than those used chronically when functioning as diabetobiguanides
Resumo:
Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.
Resumo:
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Resumo:
As the prevalence of smoking has decreased to below 20%, health practitioners interest has shifted towards theprevalence of obesity, and reducing it is one of the major health challenges in decades to come. In this paper westudy the impact that the final product of the anti-smoking campaign, that is, smokers quitting the habit, had onaverage weight in the population. To these ends, we use data from the Behavioral Risk Factors Surveillance System,a large series of independent representative cross-sectional surveys. We construct a synthetic panel that allows us tocontrol for unobserved heterogeneity and we exploit the exogenous changes in taxes and regulations to instrumentthe endogenous decision to give up the habit of smoking. Our estimates, are very close to estimates issued in the 90sby the US Department of Health, and indicate that a 10% decrease in the incidence of smoking leads to an averageweight increase of 2.2 to 3 pounds, depending on choice of specification. In addition, we find evidence that the effectovershoots in the short run, although a significant part remains even after two years. However, when we split thesample between men and women, we only find a significant effect for men. Finally, the implicit elasticity of quittingsmoking to the probability of becoming obese is calculated at 0.58. This implies that the net benefit from reducingthe incidence of smoking by 1% is positive even though the cost to society is $0.6 billions.
Resumo:
Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.
Resumo:
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Resumo:
Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved.
Resumo:
Abstract: Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer"s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols.
Resumo:
The incidence of head and neck squamous cell carcinoma (HNSCC) has been gradually increasing over the last three decades. Recent data have now attributed a viral aetiology to a subset of head and neck cancers. Several studies indicate that oral human papillomavirus (HPV) infection is likely to be sexually acquired. The dominance of HPV 16 in HPV+ HNSCC is even greater than that seen in cervical carcinoma of total worldwide cases. Strong evidence suggests that HPV+ status is an important prognostic factor associated with a favourable outcome in head and neck cancers. Approximately 30 to 40% of HNSCC patients with present with early stage I/II disease. These patients are treated with curative intent using single modality treatments either radiation or surgery alone. A non-operative approach is favored for patients in which surgery followed by either radiation alone or radiochemotherapy may lead to severe functional impairment. Cetuximab, a humanized mouse anti-EGFR IgG1 monoclonal antibody, improved locoregional control and overall survival in combination with radiotherapy in locally advanced tumours but at the cost of some increased cardiac morbidity and mortality. Finally, the improved prognosis and treatment responses to chemotherapy and radiotherapy by HPV+ tumours may suggest that HPV status detection is required to better plan and individualize patient treatment regimes.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.
Resumo:
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by 'RTK swapping' by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.