31 resultados para Angiotensin-converting enzyme inhibitors
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Gender-related differences are seen in multiple aspects of both health and illness. Ischemic heart disease (IHD) is a pathology in which diagnostic, treatment and prognostic differences are seen between sexes, especially in the acute phase and in the hospital setting. The objective of the present study is to analyze whether there are differences between men and women when examining associated cardiovascular risk factors and secondary pharmacological prevention in the primary care setting. Methods: Retrospective descriptive observational study from January to December of 2006, including 1907 patients diagnosed with ischemic heart disease in the city of Lleida, Spain. The clinical data were obtained from computerized medical records and pharmaceutical records of medications dispensed in pharmacies with official prescriptions. Data was analyzed using bivariate descriptive statistical analysis as well as logistic regression. Results: There were no gender-related differences in screening percentages for arterial hypertension, diabetes, obesity, dyslipemia, and smoking. A greater percentage of women were hypertensive, obese and diabetic compared to men. However, men showed a tendency to achieve control targets more easily than women, with no statistically significant differences. In both sexes cardiovascular risk factors control was inadequate, between 10 and 50%. For secondary pharmaceutical prevention, the percentages of prescriptions were greater in men for anticoagulants, beta-blockers, lipid-lowering agents and angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers, with age group variations up to 10%. When adjusting by age and specific diagnoses, differences were maintained for anticoagulants and lipid-lowering agents. Conclusion: Screening of cardiovascular risk factors was similar in men and women with IHD. Although a greater percentage of women were hypertensive, diabetic or obese, their management of risk factors tended to be worse than men. Overall, a poor control of cardiovascular risk factors was noted. Taken as a whole, more men were prescribed secondary prevention drugs, with differences varying by age group and IHD diagnosis.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
Transketolase is an enzyme involved in a critical step of the non-oxidative branch of the pentose phosphate pathway whose inhibition could lead to new anticancer drugs. Here, we report new human transketolase inhibitors, based on the phenyl urea scaffold, found by applying structure-based virtual screening. These inhibitors are designed to cover a hot spot in the dimerization interface of the homodimer of the enzyme, providing for the first time compounds with a suggested novel binding mode not based on mimicking the thiamine pyrophosphate cofactor.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
P27(Kip1) (p27) is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Recently, a new function of p27 as transcriptional regulator has been reported. It has been shown that p27 regulates the expression of target genes mostly involved in splicing, cell cycle, respiration and translation. We report here that p27 directly binds to the transcriptional coactivator PCAF by a region including amino acids 91-120. PCAF associates with p27 through its catalytic domain and acetylates p27 at lysine 100. Our data showed that overexpression of PCAF induces the degradation of p27 whereas in contrast, the knockdown of PCAF stabilizes the protein. A p27 mutant in which K100 was substituted by arginine (p27-K100R) cannot be acetylated by PCAF and has a half-life much higher than that of p27WT. Moreover, p27-K100R remains stable along cell-cycle progression. Ubiquitylation assays and the use of proteasome inhibitors indicate that PCAF induces p27 degradation via proteasome. We also observed that knockdown of skp2 did not affect the PCAF induced degradation of p27. In conclusion, our data suggest that the p27 acetylation by PCAF regulates its stability.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
C75 is a synthetic racemic α-methylene-γ-butyrolactone exhibiting anti-tumoral properties in vitro and in vivo as well as inducing hypophagia and weight loss in rodents. These interesting properties are thought to be a consequence of the inhibition of the key enzymes FAS and CPT1 involved in lipid metabolism. The need for larger amounts of this compound for biological evaluation prompted us to develop a convenient and reliable route to multigram quantities of C75 from easily available ethyl penta-3,4-dienoate 6. A recently described protocol for the addition of 6 to a mixture of dicyclohexylborane and nonanal followed by acidic treatment of the crude afforded lactone 8, as a mixture of cis and trans isomers, in good yield. The DBU-catalyzed isomerization of the methyl esters 9 arising from 8 gave a 10:1 trans/cis mixture from which the trans isomer was isolated and easily transformed into C75. The temporary transformation of C75 into a phenylseleno ether derivative makes its purification, manipulation and storage easier.
Resumo:
We have synthesized a family of rheinhuprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and ()-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and ()-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and ()-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
We have synthesized a family of rheinhuprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and ()-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and ()-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and ()-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and hydrogen peroxide (H2O2) plays a central role in the stress. Huprines, a group of potent acetylcholinesterase inhibitors (AChEIs), have shown a broad cholinergic pharmacological profile. Recently, it has been observed that huprine X (HX) improves cognition in non transgenic middle aged mice and shows a neuroprotective activity (increased synaptophysin expression) in 3xTg-AD mice. Consequently, in the present experiments the potential neuroprotective effect of huprines (HX, HY, HZ) has been analyzed in two different in vitro conditions: undifferentiated and NGF-differentiated PC12 cells. Cells were subjected to oxidative insult (H2O2, 200 µM) and the protective effects of HX, HY and HZ (0.01 µM- 1 µM) were analyzed after a pre-incubation period of 24 and 48 hours. All huprines showed protective effects in both undifferentiated and NGF-differentiated cells, however only in differentiated cells the effect was dependent on cholinergic receptors as atropine (muscarinic antagonist, 0.1 µM) and mecamylamine (nicotinic antagonist, 100 µM) reverted the neuroprotection action of huprines. The decrease in SOD activity observed after oxidative insult was overcome in the presence of huprines and this effect was not mediated by muscarinic or nicotinic receptors. In conclusion, huprines displayed neuroprotective properties as previously observed in in vivo studies. In addition, these effects were mediated by cholinergic receptors only in differentiated cells. However, a non-cholinergic mechanism, probably through an increase in SOD activity, seems to be also involved in the neuroprotective effects of huprines.