2 resultados para AldH-based biosensors

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest article descriu els sensors enzimàtics i immunosensors electroquímics que s’han desenvolupat als nostres grups per a la detecció de la biotoxina marina àcid okadaic (OA), i discuteix la possibilitat d’integrar-los en programes de seguiment. Els sensors enzimàtics per a OA que es presenten es basen en la inhibició de la proteïna fosfatasa (PP2A) per aquesta toxina i la mesura electroquímica de l’activitat enzimàtica mitjançant l’ús de substrats enzimàtics apropiats, electroquímicament actius després de la seva desfosforació per l’enzim. Els immunosensors electroquímics descrits en aquest article es basen en un enzimoimmunoassaig sobre fase sòlida competitiu indirecte (ciELISA), amb fosfatasa alcalina (ALP) o peroxidasa (HRP) com a marcatges, i un sistema de reciclatge enzimàtic amb diaforasa (DI). Els biosensors presentats aquí s’han aplicat a l’anàlisi de dinoflagel·lats, musclos i ostres. Les validacions preliminars amb assaigs colorimètrics i LC-MS/MS han demostrat la possibilitat d’utilitzar les bioeines desenvolupades per al cribratge preliminar de biotoxines marines en mostres de camp o de cultiu, que ofereixen informació complementària a la cromatografia. En conclusió, tot i que encara cal optimitzar alguns paràmetres experimentals, la integració dels biosensors a programes de seguiment és viable i podria proporcionar avantatges respecte a altres tècniques analítiques pel que fa al temps d’anàlisi, la simplicitat, la selectivitat, la sensibilitat, el fet de poder ser d’un sol ús i l’efectivitat de cost. This article describes the electrochemical enzyme sensors and immunosensors that have been developed by our groups for the detection of marine biotoxin okadaic acid (OA), and discusses the possibility of integrating them into monitoring programmes. The enzyme sensors for OA reported herein are based on the inhibition of immobilised protein phosphatase 2A (PP2A) by this toxin and the electrochemical measurement of the enzyme activity through the use of appropriate enzyme substrates, which are electrochemically active after dephosphorylation by the enzyme. The electrochemical immunosensors described in this article are based on a competitive indirect Enzyme- Linked ImmunoSorbent Assay (ciELISA), using alkaline phosphatase (ALP) or horseradish peroxidase (HRP) as labels, and an enzymatic recycling system with diaphorase (DI). The biosensors presented herein have been applied to the analysis of dinoflagellates, mussels and oysters. Preliminary validations with colorimetric assays and LC-MS/MS have demonstrated the possibility of using the developed biotools for the preliminary screening of marine biotoxins in field or cultured samples, offering complementary information to chromatography. In conclusion, although optimisation of some experimental parameters is still required, the integration of biosensors into monitoring programmes is viable and may provide advantages over other analytical techniques in terms of analysis time, simplicity, selectivity, sensitivity, disposability of electrodes and cost effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.