12 resultados para Agalma elegans

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Columbia University, United States, from 2010 to 2012. Expression of SoxB genes correlates with the commitment of cells to a neural fate; however, the relevance of SoxB proteins in early vertebrate neurogenesis has been difficult to prove genetically due to embryonic lethality and presumed redundant functions. The nematode C. Elegants has only 5 sox genes: sox-2 and sox-3 form the SoxB group while sem-2, sox-4 and egl-13 belong to other Sox groups. Our results show that sox-2 and sem-2 are the sox genes expressed earliest and in a broader manner during embryogenesis, being expressed in several neuronal progenitors. sox-3, sox-4 and egl-13 are expressed in few cells during late embryogenesis, when most neurons are already born. Both sox-2 and sem-2 null mutants are early larval lethal but do not show neuronal specification defects during embryonic development as indicated by quantification of a panneuronal reporter. Potential redundancy or compensatory mechanisms between different sox genes have been ruled out, strongly suggesting that sox genes are not required for specification of embryonically-derived neurons. However, at the first larval stage there are still several blast cells that will give rise to different postembryonic lineages, which generate several neurons amongst other cell types. nterestingly, sox-2 is expressed in many of these progenitor cells. Using mosaic analysis we have so far identified neurons derived from two different postembryonic lineages which fail to be generated in C. elegans sox-2 mutants. These results support the idea that postembryonic progenitor competence is compromised in the absence of sox-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudi realitzat a partir d’una estada a la the Salk Institute, Estats Units, entre 2010 i 2012. L'estabilitat del genoma és essencial per a la supervivència de les cèl • lules mare, però, l'estabilitat del proteoma pot tenir un paper igualment important en la identitat de cèl • lules mare i la seva funció. La nostra hipòtesi és que les cèl • lules mare tenen la capacitat de proteostasis augmentada en comparació amb els seus homòlegs diferenciats i ens varem preguntar si l'activitat del proteasoma és diferent a les cèl • lules mare embrionàries humanes (hESCs). En particular, els nostres resultats mostren que les poblacions de cèl• lules mare presenten una activitat del proteasoma que es correlaciona amb majors nivells de la subunitat 19S del proteasoma PSMD11/RPN-6 i un corresponent augment del ensamblatge del 26S/30S proteasoma. L'expressió ectòpica de PSMD11 és suficient per augmentar l'activitat del proteasoma. Sorprenentment, varem trobar que la llarga vida del GLP-1 C. elegans mutant té també un augment dramàtic en l'activitat del proteasoma associat a nivells augmentats en l'expressió de RPN-6. El factor de transcripció DAF-16 és essencial per l'augment de la longevitat de GLP-1 i els cucs mutants que trobem DAF-16 necessari per a l'augment d'expressió de RPN-6 i, per tant, per l'activació de l'activitat del proteasoma en GLP-1 mutant animals. Una possibilitat interessant és que els gens que regulen la vida i la resistència a l'estrès en C. elegans poden també regular la funció hESCs de mamífer, cèl • lules que son considerades immortals. Aquests resultats ens van portar a la conclusió de que FOXO4, un factor de transcripció sensible a la insulina/IGF-1, regula l'activitat del proteasoma en hESCs, el que suggereix un paper per FOXO4 en la funció d’aquestes cèl • lules. En efecte, FOXO4 es necessari per a la diferenciació en llinatges neuronals de les hESCs. Els nostres resultats estableixen una nova regulació de laproteostasis en hESCs que uneix la longevitat i la resistència a l'estrès en invertebrats amb la funció i identitat de les hESCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells isone of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenoncontributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora ofdifferent transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify thedifferent types of reflected splicing variation. In this work, we present a general definition of the AS event along with anotation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assignsa specific ‘‘AS code’’ to every possible pattern of splicing variation. On the basis of this definition and the correspondingcodes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of ASevents in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversityacross genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—ofthe observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate andto compare the AS landscape of different reference annotation sets in human and in other metazoan species and found thatproportions of AS events change substantially depending on the annotation protocol, species-specific attributes, andcoding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conductspecific studies investigating the occurrence, impact, and regulation of AS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin¿induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual"s Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual"s Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain strains of Pantoea are used as biocontrol agents for the suppression of plant diseases. However, their commercial registration is hampered in some countries because of biosafety concerns. This study compares clinical and plant-beneficial strains of P. agglomerans and related species using a phenotypic analysis approach in which plant-beneficial effects, adverse effects in nematode models, and toxicity were evaluated. Plant-beneficial effects were determined as the inhibition of apple fruit infection by Penicillium expansum and apple flower infection by Erwinia amylovora. Clinical strains had no general inhibitory activity against infection by the fungal or bacterial plant pathogens, as only one clinical strain inhibited P. expansum and three inhibited E. amylovora. By contrast, all biocontrol strains showed activity against at least one of the phytopathogens, and three strains were active against both. The adverse effects in animals were evaluated in the plant-parasitic nematode Meloidogyne javanica and the bacterial-feeding nematode Caenorhabditis elegans. Both models indicated adverse effects of the two clinical strains but not of any of the plant-beneficial strains. Toxicity was evaluated by means of hemolytic activity in blood, and genotoxicity with the Ames test. None of the strains, whether clinical or plant-beneficial, showed any evidence of toxicity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.