6 resultados para Afferents

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we examine the role of Reelin, an extracellular protein involved in neuronal migration, in the formation of hippocampal connections. Both at prenatal and postnatal stages, the general laminar and topographic distribution of entorhinal projections is preserved in the hippocampus of reeler mutant mice, in the absence of Reelin. However, developing and adult entorhinal afferents show severe alterations, including increased numbers of misrouted fibers and the formation of abnormal patches of termination from the medial and lateral entorhinal cortices. At perinatal stages, single entorhinal axons in reeler mice are grouped into thick bundles, and they have decreased axonal branching and decreased extension of axon collaterals. We also show that the number of entorhino-hippocampal synapses is lower in reeler mice than in control animals during development. Studies performed in mixed entorhino-hippocampal co-cultures combining slices from reeler and wild-type mice indicate that these abnormalities are caused by the lack of Reelin in the target hippocampus. These findings imply that Reelin fulfills a modulatory role during the formation of layer-specific and topographic connections in the hippocampus. They also suggest that Reelin promotes maturation of single fibers and synaptogenesis by entorhinal afferents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have suggested a role for neurotrophins in the growth and refinement of neural connections, in dendritic growth, and in activity-dependent adult plasticity. To unravel the role of endogenous neurotrophins in the development of neural connections in the CNS, we studied the ontogeny of hippocampal afferents intrkB (¿/¿) and trkC (¿/¿) mice. Injections of lipophilic tracers in the entorhinal cortex and hippocampus of newborn mutant mice showed that the ingrowth of entorhinal and commissural/associational afferents to the hippocampus was not affected by these mutations. Similarly, injections of biocytin in postnatal mutant mice (P10¿P16) did not reveal major differences in the topographic patterns of hippocampal connections. In contrast, quantification of biocytin-filled axons showed that commissural and entorhinal afferents have a reduced number of axon collaterals (21¿49%) and decreased densities of axonal varicosities (8¿17%) in both trkB (¿/¿) and trkC (¿/¿) mice. In addition, electron microscopic analyses showed thattrkB (¿/¿) and trkC (¿/¿) mice have lower densities of synaptic contacts and important structural alterations of presynaptic boutons, such as decreased density of synaptic vesicles. Finally, immunocytochemical studies revealed a reduced expression of the synaptic-associated proteins responsible for synaptic vesicle exocytosis and neurotransmitter release (v-SNAREs and t-SNAREs), especially in trkB (¿/¿) mice. We conclude that neither trkB nor trkC genes are essential for the ingrowth or layer-specific targeting of hippocampal connections, although the lack of these receptors results in reduced axonal arborization and synaptic density, which indicates a role for TrkB and TrkC receptors in the developmental regulation of synaptic inputs in the CNS in vivo. The data also suggest that the genes encoding for synaptic proteins may be targets of TrkB and TrkC signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was performed to investigate the possibility of 'aberrant' innervation of the tips of the hindlimb digits in the rat, i.e., from other sources than the femoral and the main sciatic branches (tibial, peroneal, sural). Cutaneous injections of fluorescent tracers in the digits were combined with either selective nerve transections to restrict afferent routes followed by detection of labeled neurons in dorsal root ganglia (DRGs), or by a delayed application of a second tracer to afferent nerves under study to detect double labeled neurons in DRGs. The results show that the tips of the digits were represented in DRGs L3-6. The femoral nerve afferents from digits 1 and 2 projected primarily to DRG L3 and to a smaller extent to DRG L4. A small number of neurons from primarily medial digits 1 and 2, but also from lateral digits 3-5, were found to project to DRGs L4 and L5 via a proximal branch that leaves the sciatic nerve near the sciatic notch and runs distally in the posterior part of the thigh, here called the musculocutaneous nerve of the hindlimb. We also have some evidence indicating innervation of the tips of the digits from the posterior cutaneous nerve of the thigh. Aberrant innervation such as that described here might contribute to remaining and perhaps abnormal sensibility after nerve injury and is of interest for the interpretation of results in experimental studies of collateral and regenerative sprouting after such injury

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to investigate the efficacy of the fluorescent dyes Fast Blue (FB), Fluoro-Gold (FG), and Diamidino Yellow (DY) for retrograde tracing of lumbar dorsal root ganglia after their subcutaneous injection into different hindlimb digits. Injection of equal volumes (0.5 mu l) of 5% FB or 2% FG resulted in similar mean numbers of sensory neurones labelled by each tracer. Injection of equal volumes (0.5 mu l) of FB or FG in a single digit followed 10 days later by a second injection of the same volume of 5% DY into the same digit resulted in similar mean numbers of labelled sensory neurones for each of the three tracers. Furthermore, on average, 75% of all the FB-labelled cells and 74% of all FC-labelled cells also contained DY. Repeating the same experiment with an increased volume of DY (1.5 mu l) resulted in an increase in the mean number of double-labelled profiles to 82 and 84% for FB and FG, respectively. The results show that FB, FG and DY label similar numbers of cutaneous afferents and that a high level of double labelling may be obtained after sequential injections in digits. These properties make them suitable candidates in investigations where a combination of tracers with similar labelling efficacies is needed.