15 resultados para Advection
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
Rapid advection of extremely warm and dry air is studied during two events in the Mediterranean Basin. On 27 August 2010 a rapid advection of extremely warm and dry air affected the northeast Iberian Peninsula during a few hours. At the Barcelona city center, the temperature reached 39.3 ° C, which is the maximum temperature value recorded during 230 yr of daily data series. On 23 March 2008 a rapid increase of temperature and drop of relative humidity were recorded for a few hours in Heraklion (Crete). During the morning on that day, the recorded temperature reached 34 °C for several hours on the northern coastline of this island.According to the World Meteorological Organization none of these events can be classified as a heat wave, which requires at least two days of abnormally high temperatures; neither are they a heat burst as defined by the American Meteorological Society, where abnormal temperatures take place during a few minutes. For this reason, we suggest naming this type of event flash heat. By using data from automatic weather stations in the Barcelona and Heraklion area and WRF mesoscale numerical simulations, these events are analyzed. Additionally, the primary risks and possible impacts on several fields are presented.
Resumo:
Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and Pb-210 activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon (Delta C-14 = -944.5 +/- 24.7%; mean age 23,650 +/- 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 +/- 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Delta C-14 = -704.4 +/- 62.5%) relative to inner shelf (Delta C-14 = -293.4 +/- 134.0%), mid-shelf (Delta C-14 = -366.6 +/- 51.1%), and outer shelf (Delta C-14 = -384 +/- 47.8%) surface sediments. Therefore, although the major source of particulate material during the cascading season is resuspended shelf deposits, there is evidence that this aged pool of organic carbon can be eroded and laterally advected downslope.
Resumo:
Report for the scientific sojourn carried out at the University of New South Wales from February to June the 2007. Two different biogeochemical models are coupled to a three dimensional configuration of the Princeton Ocean Model (POM) for the Northwestern Mediterranean Sea (Ahumada and Cruzado, 2007). The first biogeochemical model (BLANES) is the three-dimensional version of the model described by Bahamon and Cruzado (2003) and computes the nitrogen fluxes through six compartments using semi-empirical descriptions of biological processes. The second biogeochemical model (BIOMEC) is the biomechanical NPZD model described in Baird et al. (2004), which uses a combination of physiological and physical descriptions to quantify the rates of planktonic interactions. Physical descriptions include, for example, the diffusion of nutrients to phytoplankton cells and the encounter rate of predators and prey. The link between physical and biogeochemical processes in both models is expressed by the advection-diffusion of the non-conservative tracers. The similarities in the mathematical formulation of the biogeochemical processes in the two models are exploited to determine the parameter set for the biomechanical model that best fits the parameter set used in the first model. Three years of integration have been carried out for each model to reach the so called perpetual year run for biogeochemical conditions. Outputs from both models are averaged monthly and then compared to remote sensing images obtained from sensor MERIS for chlorophyll.
Resumo:
The bathyal faunal communities of the NW Mediterranean slopes have been studied consistently in the last two decades, with a special focus on population structure, trophic dynamics and benthopelagic coupling of commercial deep-sea decapod crustaceans and fishes (reviewed in Sardà et al. 2004) and associated species (Cartes and Sardà, 1993; Company and Sardà, 1997, 2000; Cartes et al., 2001; Company et al., 2001, 2003, 2004). One of the major topographic features in the North-western Mediterranean slope is the presence of submarine canyons. Canyons play a major role in funnelling energy and organic matter from the shelf to bathyal and abyssal depths (Puig et al., 2000), but the implications of this enhanced organic supply in the deep-sea benthic communities is still mostly unknown. Trophic supply can follow two major pathways – vertical deposition in the water column (Billett et al., 1983; Baldwin et al., 1998; Lampitt et al., 2001) or down-slope advection on the margins (Puig et al., 2001; Bethoux et al., 2002; Canals et al., 2006) – and can be a limiting factor in the deep-sea, being especially important in the oligotrophic Mediterranean Sea (Sardà et al., 2004). Differences in the quantity, quality and timing of organic matter input to the deep seafloor have been used to explain patterns of biomass and abundance in benthic communities (Levin et al., 1994; Gooday & Turley, 1990; Billett et al., 2001; Galéron et al., 2001; Puig et al., 2001; Gage, 2003) as well as other biological process and in particular the existence of seasonal reproduction (Tyler et al., 1994; Company et al., 2004 (MEPS). Reproduction is a highly energetic process tightly linked to food availability and quality.
Resumo:
We consider an exponentially fitted discontinuous Galerkin method for advection dominated problems and propose a block solver for the resulting linear systems. In the case of strong advection the solver is robust with respect to the advection direction and the number of unknowns.
Resumo:
This paper presents an observational study of the tornado outbreak that took place on the 7 September 2005 in the Llobregat delta river, affecting a densely populated and urbanised area and the Barcelona International airport (NE Spain). The site survey confirmed at least five short-lived tornadoes. Four of them were weak (F0, F1) and the other one was significant (F2 on the Fujita scale). They started mostly as waterspouts and moved later inland causing extensive damage estimated in 9 million Euros, three injured people but fortunately no fatalities. Large scale forcing was provided by upper level diffluence and low level warm air advection. Satellite and weather radar images revealed the development of the cells that spawned the waterspouts along a mesoscale convergence line in a highly sheared and relatively low buoyant environment. Further analysis indicated characteristics that could be attributed indistinctively to non-supercell or to mini-supercell thunderstorms.
Resumo:
The current operational very short-term and short-term quantitative precipitation forecast (QPF) at the Meteorological Service of Catalonia (SMC) is made by three different methodologies: Advection of the radar reflectivity field (ADV), Identification, tracking and forecasting of convective structures (CST) and numerical weather prediction (NWP) models using observational data assimilation (radar, satellite, etc.). These precipitation forecasts have different characteristics, lead time and spatial resolutions. The objective of this study is to combine these methods in order to obtain a single and optimized QPF at each lead time. This combination (blending) of the radar forecast (ADV and CST) and precipitation forecast from NWP model is carried out by means of different methodologies according to the prediction horizon. Firstly, in order to take advantage of the rainfall location and intensity from radar observations, a phase correction technique is applied to the NWP output to derive an additional corrected forecast (MCO). To select the best precipitation estimation in the first and second hour (t+1 h and t+2 h), the information from radar advection (ADV) and the corrected outputs from the model (MCO) are mixed by using different weights, which vary dynamically, according to indexes that quantify the quality of these predictions. This procedure has the ability to integrate the skill of rainfall location and patterns that are given by the advection of radar reflectivity field with the capacity of generating new precipitation areas from the NWP models. From the third hour (t+3 h), as radar-based forecasting has generally low skills, only the quantitative precipitation forecast from model is used. This blending of different sources of prediction is verified for different types of episodes (convective, moderately convective and stratiform) to obtain a robust methodology for implementing it in an operational and dynamic way.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
A regional study of snow avalanche processes was undertaken in the SE Pyrenees. Dendrogeomorphology was used to date and reconstruct large-scale snow avalanche events that occurred in the last four decades. Dendrochronological analyses yielded the dates of nine winters when avalanches occurred in the recent past in six studied avalanche paths. Some of these avalanches were already known, but others had not been documented. In one case, the existing avalanche path map was improved with the dendrogeomorphological information of a larger past event. As a result of the dendrogeomorphological analyses, evidence for three regional-scale major avalanche years was identified in the SE Pyrenees from 1971 to 2004: 1971¿1972, 1995¿1996 and 2002¿2003. The specific synoptic atmospheric situations and the most likely nivometeorological and snowpack conditions that released these major avalanches were determined using weather data for the seasons of major avalanche releases. In 1971¿1972 the snow avalanche episode was characterized by a deep trough crossing the Pyrenees. In 1995¿1996 a variety of meteorological situations produced several episodes of major avalanches. In 2002¿2003 the more significant of two episodes was attributed to a north advection pumping an arctic air mass over the Pyrenees. The 1995¿1996 avalanche season proved to be the most notable in the four past decades in the Pyrenees.
Resumo:
The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.
Resumo:
We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.
Resumo:
The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration