20 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi realitzat a partir d’una estada a Bell Labs (Lucent Technologies), New Jersey (Estats Units), entre el 15 de setembre de 2005 i el 15 de gener de 2006. Els sistemes de transmissió per fibra òptica fonamenten les principals xarxes de comunicacions. A mesura que la demanda d’ample de banda per usuari creixi, seran necessaris nous sistemes que siguin capaços de cobrir les necessitats a curt i llarg termini. La tecnologia dels sistemes òptics limita fortament la complexitat dels sistemes de transmissió / recepció en comparació, per exemple, als sistemes d’ones de ràdio. La tendència és la de dissenyar sistemes avançats amb detecció directa i mirar d’aplicar tècniques bàsiques de processat del senyal. Una d’aquestes tècniques és l’equalització electrònica, és a dir, fer ús de les tècniques de processament del senyal per tal de compensar la distorsió introduïda pel canal, deguda per una o diverses degradacions típiques: dispersió cromàtica, efectes no lineals, dispersió del mode de polarització (PMD) ... Dins d’un entorn comercial d’empresa, s’ha avaluat el funcionament dels sistemes d’equalització FFE-DFE aixi com MLSE en presència de dispersió cromàtica i/o dispersió del mode de polarització (PMD) en transmissions NRZ/RZ.
Resumo:
This paper deals with the design of nonregenerativerelaying transceivers in cooperative systems where channel stateinformation (CSI) is available at the relay station. The conventionalnonregenerative approach is the amplify and forward(A&F) approach, where the signal received at the relay is simplyamplified and retransmitted. In this paper, we propose an alternativelinear transceiver design for nonregenerative relaying(including pure relaying and the cooperative transmission cases),making proper use of CSI at the relay station. Specifically, wedesign the optimum linear filtering performed on the data to beforwarded at the relay. As optimization criteria, we have consideredthe maximization of mutual information (that provides aninformation rate for which reliable communication is possible) fora given available transmission power at the relay station. Threedifferent levels of CSI can be considered at the relay station: onlyfirst hop channel information (between the source and relay);first hop channel and second hop channel (between relay anddestination) information, or a third situation where the relaymay have complete cooperative channel information includingall the links: first and second hop channels and also the directchannel between source and destination. Despite the latter beinga more unrealistic situation, since it requires the destination toinform the relay station about the direct channel, it is useful as anupper benchmark. In this paper, we consider the last two casesrelating to CSI.We compare the performance so obtained with theperformance for the conventional A&F approach, and also withthe performance of regenerative relays and direct noncooperativetransmission for two particular cases: narrowband multiple-inputmultiple-output transceivers and wideband single input singleoutput orthogonal frequency division multiplex transmissions.
Resumo:
This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
Para preservar la biodiversidad de los ecosistemas forestales de la Europa mediterránea en escenarios actuales y futuros de cambio global mediante una gestión forestal sostenible es necesario determinar cómo influye el medio ambiente y las propias características de los bosques sobre la biodiversidad que éstos albergan. Con este propósito, se analizó la influencia de diferentes factores ambientales y de estructura y composición del bosque sobre la riqueza de aves forestales a escala 1 × 1 km en Cataluña (NE de España). Se construyeron modelos univariantes y multivariantes de redes neuronales para respectivamente explorar la respuesta individual a las variables y obtener un modelo parsimonioso (ecológicamente interpretable) y preciso. La superficie de bosque (con una fracción de cabida cubierta superior a 5%), la fracción de cabida cubierta media, la temperatura anual y la precipitación estival medias fueron los mejores predictores de la riqueza de aves forestales. La red neuronal multivariante obtenida tuvo una buena capacidad de generalización salvo en las localidades con una mayor riqueza. Además, los bosques con diferentes grados de apertura del dosel arbóreo, más maduros y más diversos en cuanto a su composición de especies arbóreas se asociaron de forma positiva con una mayor riqueza de aves forestales. Finalmente, se proporcionan directrices de gestión para la planificación forestal que permitan promover la diversidad ornítica en esta región de la Europa mediterránea.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
The objective of this paper is to compare the performance of twopredictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.
Resumo:
In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
A recent method used to optimize biased neural networks with low levels of activity is applied to a hierarchical model. As a consequence, the performance of the system is strongly enhanced. The steps to achieve optimization are analyzed in detail.