2 resultados para Adams, Samuel, 1722-1803.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En este artículo nos centramos en uno de los temas de la gramática española más complejos: la conjugación verbal. A partir de la obra de Samuel Gili Gaya (1961), Curso superior de sintaxis española, analizamos en obras gramaticales representativas de la segunda mitad del siglo XX el estudio de este tema considerando la presencia de las teorías de Gili Gaya. Con ello, pretendemos comprobar nuestra hipótesis inicial: las ideas lingüísticas de este autor suponen, en gran medida, la unión de la Gramática tradicional con enfoques posteriores.
Resumo:
Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.