3 resultados para Acute toxicity
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Allylnitrile, cis-crotononitrile, and 3,3 -iminodipropionitrile are known to cause vestibular toxicity in rodents, and evidence is available indicating that cis-2-pentenenitrile shares this effect. We evaluated nineteen nitriles for vestibular toxicity in wild type (129S1) and CYP2E1-null mice, including all the above, several neurotoxic nitriles, and structurally similar nitriles. A new acute toxicity test protocol was developed to facilitate evaluation of the vestibular toxicity by a specific behavioral test battery at doses up to sub-lethal levels while using a limited number of animals. A mean number of 8.5±0.3 animals per nitrile, strain and sex was necessary to obtain evidence of vestibular toxicity and optionally an estimation of the lethal dose. For several but not all nitriles, lethal doses significantly increased in CYP2E1-null mice. The protocol revealed the vestibular toxicity of five nitriles, including previously identified ototoxic compounds and one nitrile (trans-crotononitrile) known to have a different profile of neurotoxic effects in the rat. In all five cases, both sexes were affected and no decrease in susceptibility was apparent in CYP2E1-null mice respect to 129S1 mice. Fourteen nitriles caused no vestibular toxicity, including six nitriles tested in CYP2E1-null mice at doses significantly larger than the maximal doses that can be tested in wild type animals. We conclude that only a subset of low molecular weight nitriles is toxic to the vestibular system, that species-dependent differences exist in this vestibular toxicity, and that CYP2E1-mediated metabolism is not involved in this effect of nitriles although it has a role in the acute lethality of some of these compounds
Resumo:
Among increasingly used pharmaceutical products, β-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 β-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic β-blocker, mostly affecting the algal photosynthetic process. The exposure to 531 μg/L of propranolol caused 85% of inhibition of photosynthesis after 24 h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503 μg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested β-blockers. Effects superior to 50% were only observed at very high concentration (707 mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since β-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms
Resumo:
In Europe, the safety evaluation of cosmetics is based on the safety evaluation of each individual ingredient. Article 3 of the Cosmetics Regulation specifies that a cosmetic product made available on the market is to be safe for human health when used normally or under reasonably foreseeable conditions. For substances that cause some concern with respect to human health (e.g. colorants, preservatives, UV-filters), safety is evaluated at the Commission level by a scientific committee, presently called the Scientific Committee on Consumer Safety (SCCS). According to the Cosmetics Regulations, in the EU, the marketing of cosmetics products and their ingredients that have been tested on animals for most of their human health effects, including acute toxicity, is prohibited. Nevertheless, any study dating from before this prohibition took effect is accepted for the safety assessment of cosmetics ingredients. The in vitro methods reported in the dossiers summited to the SCCS are here evaluated from the published reports issued by the scientific committee of the Directorate General of Health and Consumers (DG SANCO); responsible for the safety of cosmetics ingredients. The number of studies submitted to the SCCS that do not involve animals is still low and in general the safety of cosmetics ingredients is based on in vivo studies performed before the prohibition.