46 resultados para Activation-relaxation technique
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Problema del estudio: El sector de enfermería perteneciente a las Unidades de Cuidados Intensivos presentan estrés, y se ofrece la Técnica de respiración Jacobson como herramienta para disminuir los niveles y los problemas derivados del estrés. Objetivo general: Evaluar la eficacia de la técnica de respiración Jacobson sobre el estrés en los profesionales de enfermería de UCI. Objetivos específicos: Diseñar un taller de respiración de la técnica Jacobson, para enfermería de UCI; comparar los niveles de estrés de los enfermeros de UCI antes y después de la intervención mediante los cuestionarios STAI, NSS y NWI; y evaluar los principales factores estresantes de los enfermeros/as en su trabajo, comparando los 2 grupos de la intervención (los que realizan el programa de la Técnica de relajación Jacobson y los que no participan). Metodología: El ámbito de estudio será una planta del servicio de UCI de un Hospital de Agudos. Se trata de un ensayo clínico aleatorio y experimental, que constará de 2 grupos control; uno realizará la intervención (Grupo 1) y el otro no (Grupo 2). Los sujetos del estudio son las enfermeras/os de una planta de UCI de un Hospital de Agudos, incluidas enfermeras administrativas y gerentes. Los instrumentos que se utilizarán son: la recogida de datos personales de cada participante, Test STAI (State-Trait Anxiety Inventory), Escala de Estrés de Enfermería NSS (Nursing Stress Scale) y Escala del entorno de práctica enfermera del NWI (Nursing Work Index). Limitaciones del estudio: Pérdidas de seguimiento y la no participación de las enfermeras/os en el estudio.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
To what extent do people behave in immersive virtual environments as they would in similar situations in a physical environment? There are many ways to address this question, ranging from questionnaires, behavioral studies, and the use of physiological measures. Here, we compare the onsets of muscle activity using surface electromyography (EMG) while participants were walking under three different conditions: on a normal floor surface, on a narrow ribbon along the floor, and on a narrow platform raised off the floor. The same situation was rendered in an immersive virtual environment (IVE) Cave-like system, and 12 participants did the three types of walking in a counter-balanced within-groups design. The mean number of EMG activity onsets per unit time followed the same pattern in the virtual environment as in the physical environment-significantly higher for walking on the platform compared to walking on the floor. Even though participants knew that they were in fact really walking at floor level in the virtual environment condition, the visual illusion of walking on a raised platform was sufficient to influence their behavior in a measurable way. This opens up the door for this technique to be used in gait and posture related scenarios including rehabilitation.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. In [12] an algorithm, called extended relaxation method, that solves the feasibility problem, has been proposed by the authors. Convergence of the algorithm has been proven. In this paper, we onsider a class of extended relaxation methods depending on a parameter and prove their convergence. Numerical experiments have been provided, as well.
Resumo:
Els malalts crítics presenten sovint seqüeles cognitives a llarg termini, l’aplicació de ventilació mecànica (VM) pot contribuir al seu desenvolupament. El principal objectiu del nostre estudi fou investigar l’efecte de dos patrons de ventilació (volum corrent elevat/baix) en l’activació neuronal (expressió de c-fos) en determinades àrees cerebrals en un model en rates. Després de 3 hores sota VM, es va trobar activació neuronal; la seva intensitat va ser superior al grup de volum corrent elevat, suggerint un efecte iatrogènic de la VM al cervell. Aquests resultats suggereixen que cal aprofundir en l’estudi del crosstalk cervell-pulmó en malalts crítics sota VM.
Resumo:
This paper presents the implementation details of a coded structured light system for rapid shape acquisition of unknown surfaces. Such techniques are based on the projection of patterns onto a measuring surface and grabbing images of every projection with a camera. Analyzing the pattern deformations that appear in the images, 3D information of the surface can be calculated. The implemented technique projects a unique pattern so that it can be used to measure moving surfaces. The structure of the pattern is a grid where the color of the slits are selected using a De Bruijn sequence. Moreover, since both axis of the pattern are coded, the cross points of the grid have two codewords (which permits to reconstruct them very precisely), while pixels belonging to horizontal and vertical slits have also a codeword. Different sets of colors are used for horizontal and vertical slits, so the resulting pattern is invariant to rotation. Therefore, the alignment constraint between camera and projector considered by a lot of authors is not necessary
Resumo:
In the present work, microstructure improvement using FSP (Friction Stir Processing) is studied. In the first part of the work, the microstructure improvement of as-cast A356 is demonstrated. Some tensile tests were applied to check the increase in ductility. However, the expected results couldn’t be achieved. In the second part, the microstructure improvement of a fusion weld in 1050 aluminium alloy is presented. Hardness tests were carried out to prove the mechanical propertyimprovements. In the third and last part, the microstructure improvement of 1050 aluminium alloy is achieved. A discussion of the mechanical property improvements induced by FSP is made. The influence of tool traverse speed on microstructure and mechanical properties is also discussed. Hardness tests and recrystallization theory enabled us to find out such influence
Resumo:
Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion
Resumo:
A simple extended finite field nuclear relaxation procedure for calculating vibrational contributions to degenerate four-wave mixing (also known as the intensity-dependent refractive index) is presented. As a by-product one also obtains the static vibrationally averaged linear polarizability, as well as the first and second hyperpolarizability. The methodology is validated by illustrative calculations on the water molecule. Further possible extensions are suggested
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
The relevance of the fragment relaxation energy term and the effect of the basis set superposition error on the geometry of the BF3⋯NH3 and C2H4⋯SO2 van der Waals dimers have been analyzed. Second-order Møller-Plesset perturbation theory calculations with the d95(d,p) basis set have been used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers have been obtained by relocating the stationary points on the counterpoise-corrected potential energy surface of the processes involved. The fragment relaxation energy can have a large influence on both the intermolecular parameters and barrier height. The counterpoise correction has proved to be important for these systems
Resumo:
BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.