22 resultados para Acoustic Component Detection
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper, two probabilistic adaptive algorithmsfor jointly detecting active users in a DS-CDMA system arereported. The first one, which is based on the theory of hiddenMarkov models (HMM’s) and the Baum–Wech (BW) algorithm,is proposed within the CDMA scenario and compared withthe second one, which is a previously developed Viterbi-basedalgorithm. Both techniques are completely blind in the sense thatno knowledge of the signatures, channel state information, ortraining sequences is required for any user. Once convergencehas been achieved, an estimate of the signature of each userconvolved with its physical channel response (CR) and estimateddata sequences are provided. This CR estimate can be used toswitch to any decision-directed (DD) adaptation scheme. Performanceof the algorithms is verified via simulations as well as onexperimental data obtained in an underwater acoustics (UWA)environment. In both cases, performance is found to be highlysatisfactory, showing the near–far resistance of the analyzed algorithms.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to thecomposition of the planets crustal materials. If this relationship is true, then inferences regarding the bulkchemistry of the planet might be made from a thorough exospheric study. The most vexing of allunsolved problems is the uncertainty in the source of each component. Historically, it has been believedthat H and He come primarily from the solar wind, while Na and K originate from volatilized materialspartitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms andmolecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulateddesorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its owntemporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly ellipticalorbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperatureand experiences differences of insolation with longitude. We will discuss these processes but focus moreon the expected surface composition and solar wind particle sputtering which releases material like Caand other elements from the surface minerals and discuss the relevance of composition modelling
Resumo:
Report for the scientific sojourn carried out at the Paul Drude Institut für Festkörperelektronik of the Stanford University, USA, from 2010 to 2012. The objective of this project is the transport and control of electronic charge and spin along GaAs-based semiconductor heterostructures. The electronic transport has been achieved by taking advantage of the piezolectric field induced by surface acoustic waves in non-centrosymmetric materials like GaAs. This piezolectric field separates photogenerated electrons and holes at different positions along the acoustic wave, where they acummulate and are transported at the same velocity as the wave. Two different kinds of structures have been studied: quantum wells grown along the (110) direction, both intrinsic and n-doped, as well as GaAs nanowires. The analysis of the charge acoustic transport was performed by micro-photoluminescence, whereas the detection of the spin transport was done either by analyzing the polarization state of the emitted photoluminescence or by Kerr reflectometry. Our results in GaAs quantum wells show that charge and spin transport is clearly observed at the non-doped structures,obtaining spin lifetimes of the order of several nanoseconds, whereas no acoutically induced spin transport was detected for the n-doped quantum wells. In the GaAs nanowires, we were able of transporting successfully both electrons and holes along the nanowire axis, but no conservation of the spin polarization has been observed until now. The photoluminescence emitted by these structures after acoustic transport, however, shows anti-bunching characteristics, making this system a very good candidate for its use as single photon emitters.
Resumo:
Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.
Resumo:
The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.
Resumo:
We propose an edge detector based on the selection of wellcontrasted pieces of level lines, following the proposal ofDesolneux-Moisan-Morel (DMM) [1]. The DMM edge detectorhas the problem of over-representation, that is, everyedge is detected several times in slightly different positions.In this paper we propose two modifications of the originalDMM edge detector in order to solve this problem. The firstmodification is a post-processing of the output using a generalmethod to select the best representative of a bundle of curves.The second modification is the use of Canny’s edge detectorinstead of the norm of the gradient to build the statistics. Thetwo modifications are independent and can be applied separately.Elementary reasoning and some experiments showthat the best results are obtained when both modifications areapplied together.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.
Resumo:
In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.
Resumo:
Using event-related brain potentials, the time course of error detection and correction was studied in healthy human subjects. A feedforward model of error correction was used to predict the timing properties of the error and corrective movements. Analysis of the multichannel recordings focused on (1) the error-related negativity (ERN) seen immediately after errors in response- and stimulus-locked averages and (2) on the lateralized readiness potential (LRP) reflecting motor preparation. Comparison of the onset and time course of the ERN and LRP components showed that the signs of corrective activity preceded the ERN. Thus, error correction was implemented before or at least in parallel with the appearance of the ERN component. Also, the amplitude of the ERN component was increased for errors, followed by fast corrective movements. The results are compatible with recent views considering the ERN component as the output of an evaluative system engaged in monitoring motor conflict.
Resumo:
The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.
Resumo:
Los requisitos de los dispositivos empleados en los nuevos sistemas de telecomunicaciones son: unas avanzadas prestaciones, reducido tamaño y bajo coste. Actualmente, se utilizan filtros basados en la tecnología SAW para trabajar a frecuencias de microondas. Dado los inconvenientes que presentan dicho tipo de filtros, se pretende substituirlos por filtros basados en tecnología BAW. La topología en escalera es hasta el momento la más extendida para diseñar estos filtros.