7 resultados para Achillea millefolium, cover
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El herbario de la Institució Catalana d"Història Natural En este trabajo presentamos un estudio sobre el herbario de la Institució Catalana d"Història Natural. Mostramos estadísticas sobre los recolectores, los años y las localidades de recolección, las familias y los grupos taxonómicos representados, así como un listado de pliegos tipo y otros ejemplares de interés taxonómico. El herbario consta, actualmente, de 1.202 pliegos. Está constituido, casi en su totalidad, por plantas cedidas por la familia de Frederic Trèmols y por parte de la exsiccata «Plantes d"Espagne» del hermano Sennen. Los materiales proceden principalmente de Cataluña (532 pliegos, un 44 %), del resto del Estado Español (218, un 18 %) y del continente europeo (125, un 10 %), e incluyen una proporción de crucíferas poco habitual en nuestros herbarios (253, un 21 %). Por otra parte, de los 112 pliegos tipos presentes en el herbario, muy pocos taxones son reconocidos en floras actuales, como la Achillea millefolium L. subsp. ceretanica (Sennen) O. Bolòs & Vigo o el Eryngium × chevalieri Sennen. Sin embargo, el interés científico de esta colección resulta limitado, dado que una gran parte de los pliegos son duplicados de otras colecciones depositadas también en el Instituto Botánico de Barcelona.
Resumo:
La preparación de la síntesis de Achillea L. para Flora Iberica ha llevado a examinar algunas cuestiones críticas en relación con la flora de Andalucía oriental (Blanca, 2011). Para ello, se ha revisado la información bibliográfica disponible, así como los materiales de herbario de referencia; se ha contado asimismo con la colaboración del autor de la síntesis de dicha obra. Como resultado, se plantea la adición al catálogo de la flora andaluza de una nueva especie alóctona, Achillea filipendulina Lam., así como la exclusión de A. ligustica All., a la que se habían atribuido inicialmente algunos ejemplares de A. millefolium [...].
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
There is growing evidence that nonlinear time series analysis techniques can be used to successfully characterize, classify, or process signals derived from realworld dynamics even though these are not necessarily deterministic and stationary. In the present study we proceed in this direction by addressing an important problem our modern society is facing, the automatic classification of digital information. In particular, we address the automatic identification of cover songs, i.e. alternative renditions of a previously recorded musical piece. For this purpose we here propose a recurrence quantification analysis measure that allows tracking potentially curved and disrupted traces in cross recurrence plots. We apply this measure to cross recurrence plots constructed from the state space representation of musical descriptor time series extracted from the raw audio signal. We show that our method identifies cover songs with a higher accuracy as compared to previously published techniques. Beyond the particular application proposed here, we discuss how our approach can be useful for the characterization of a variety of signals from different scientific disciplines. We study coupled Rössler dynamics with stochastically modulated mean frequencies as one concrete example to illustrate this point.
Resumo:
Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.
Resumo:
We present a new technique for audio signal comparison based on tonal subsequence alignment and its application to detect cover versions (i.e., different performances of the same underlying musical piece). Cover song identification is a task whose popularity has increased in the Music Information Retrieval (MIR) community along in the past, as it provides a direct and objective way to evaluate music similarity algorithms.This article first presents a series of experiments carried outwith two state-of-the-art methods for cover song identification.We have studied several components of these (such as chroma resolution and similarity, transposition, beat tracking or Dynamic Time Warping constraints), in order to discover which characteristics would be desirable for a competitive cover song identifier. After analyzing many cross-validated results, the importance of these characteristics is discussed, and the best-performing ones are finally applied to the newly proposed method. Multipleevaluations of this one confirm a large increase in identificationaccuracy when comparing it with alternative state-of-the-artapproaches.
Resumo:
Les invasions biològiques són produïdes per espècies transportades per l'home fora de la regió d'origen a altres regions on s'estableixen i expandeixen. Són actualment de les majors causes de perduda de biodiversitat, amb el canvi d'usos del sòl, tret rellevant en zones insulars. Comprendre mecanismes de competència amb les espècies autòctones és clau per gestionar el problema. L’experiment evidencia diferències de creixement de 7 plantes natives australianes (3 espècies d’eucaliptus, 3 espècies d’acàcia, 1 pasturatge natiu), competint intraespecífica (entre mateixa espècie) i interespecíficament (acàcies o eucaliptus convivint amb pasturatge natiu) plantejant tres tractaments (sense males herbes, males herbes i males herbes a posteriori) per definir la naturalesa de la interacció dels diferents tipus funcionals d'espècies. S’analitzen tendències temporals de creixement de plàntules, així com la supervivència. S’ha detectat una moderada correlació entre taxes de creixement d’espècies i mida de la llavor, (p ≈ 0.6), així com una correlació entre la supervivència i la humitat del sòl (p ≈ 0.5); efectes estacionals. A curt termini i en escenari de primavera la convivència amb males herbes reporta creixement nul. Tractaments sense males herbes, presenten major supervivència en escenaris en competència interespecífica. A llarg termini les espècies amb major supervivència són les que conviuen amb pasturatge natiu i sense males herbes, indicant un efecte beneficiós en espècies millor adaptades a la sequera (E. loxophleba).