35 resultados para AFT Models for Crash Duration Survival Analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This empirical work applies a duration model to the study of factors determining privatization of local water services. I assess how factors determining privatization decision evolve as time goes by. A sample of 133 Spanish municipalities during the six terms of office taken place during the 1980-2002 period is analyzed. A dynamic neighboring effect is hypothesized and successfully tested. In a first stage, private water supply firms may try to expand to regions where there is no service privatized, in order to spread over this region after having being installed thanks to its scale advantages. Other factors influencing privatization decision evolve during the two decades under study, from the priority to fix old infrastructures to the concern about service efficiency. Some complementary results regarding political and budgetary factors are also obtained
Resumo:
En este trabajo se revisan algunas de las aplicaciones clásicas del bootstrap al análisis de la supervivencia. Se consideran en primer lugar el estimador bootstrap de la varianza y el estimador de la mediana corregido para el sesgo del estimador de Kaplan-Meier de la función de supervivencia. A continuación se consideran algunos aspectos mas recientes, tales como métodos para construir bandas de confianza para el estimador de la funcidn de supervivencia y contrastes aproximados para la comparación de funciones de supervivencia. En ambas situaciones el bootstrap resulta de gran utilidad para la aproximación de 10s valores críticos necesarios.
Resumo:
The GS-distribution is a family of distributions that provide an accurate representation of any unimodal univariate continuous distribution. In this contribution we explore the utility of this family as a general model in survival analysis. We show that the survival function based on the GS-distribution is able to provide a model for univariate survival data and that appropriate estimates can be obtained. We develop some hypotheses tests that can be used for checking the underlying survival model and for comparing the survival of different groups.
Resumo:
In this paper we study the disability transition probabilities (as well as the mortalityprobabilities) due to concurrent factors to age such as income, gender and education. Althoughit is well known that ageing and socioeconomic status influence the probability ofcausing functional disorders, surprisingly little attention has been paid to the combined effectof those factors along the individuals' life and how this affects the transition from one degreeof disability to another. The assumption that tomorrow's disability state is only a functionof the today's state is very strong, since disability is a complex variable that depends onseveral other elements than time. This paper contributes into the field in two ways: (1) byattending the distinction between the initial disability level and the process that leads tohis course (2) by addressing whether and how education, age and income differentially affectthe disability transitions. Using a Markov chain discrete model and a survival analysis, weestimate the probability by year and individual characteristics that changes the state of disabilityand the duration that it takes its progression in each case. We find that people withan initial state of disability have a higher propensity to change and take less time to transitfrom different stages. Men do that more frequently than women. Education and incomehave negative effects on transition. Moreover, we consider the disability benefits associatedto those changes along different stages of disability and therefore we offer some clues onthe potential savings of preventive actions that may delay or avoid those transitions. Onpure cost considerations, preventive programs for improvement show higher benefits thanthose for preventing deterioration, and in general terms, those focussing individuals below65 should go first. Finally the trend of disability in Spain seems not to change among yearsand regional differences are not found.
Resumo:
Sickness absence (SA) is an important social, economic and public health issue. Identifying and understanding the determinants, whether biological, regulatory or, health services-related, of variability in SA duration is essential for better management of SA. The conditional frailty model (CFM) is useful when repeated SA events occur within the same individual, as it allows simultaneous analysis of event dependence and heterogeneity due to unknown, unmeasured, or unmeasurable factors. However, its use may encounter computational limitations when applied to very large data sets, as may frequently occur in the analysis of SA duration. To overcome the computational issue, we propose a Poisson-based conditional frailty model (CFPM) for repeated SA events that accounts for both event dependence and heterogeneity. To demonstrate the usefulness of the model proposed in the SA duration context, we used data from all non-work-related SA episodes that occurred in Catalonia (Spain) in 2007, initiated by either a diagnosis of neoplasm or mental and behavioral disorders. As expected, the CFPM results were very similar to those of the CFM for both diagnosis groups. The CPU time for the CFPM was substantially shorter than the CFM. The CFPM is an suitable alternative to the CFM in survival analysis with recurrent events,especially with large databases.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
This paper investigates the timing of foreign direct investment (FDI) in the banking sector. The importance of this issue would arise from the existence of differential benefits associated to be the first entrant in a foreign location. Nevertheless, when uncertainty is considered, the existence of some Ownership-Location-Internalization (OLI) advantages can make FDI less reversible and/or more delayable and therefore it may be optimal for the firm to delay the investment until the uncertainty is resolved. In this paper, the nature of OLI advantages in the banking sector has been examined in order to propose a prognostic model of the timing of foreign direct investment. The model is then tested for the Spanish case using duration analysis.
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
The final year project came to us as an opportunity to get involved in a topic which has appeared to be attractive during the learning process of majoring in economics: statistics and its application to the analysis of economic data, i.e. econometrics.Moreover, the combination of econometrics and computer science is a very hot topic nowadays, given the Information Technologies boom in the last decades and the consequent exponential increase in the amount of data collected and stored day by day. Data analysts able to deal with Big Data and to find useful results from it are verydemanded in these days and, according to our understanding, the work they do, although sometimes controversial in terms of ethics, is a clear source of value added both for private corporations and the public sector. For these reasons, the essence of this project is the study of a statistical instrument valid for the analysis of large datasets which is directly related to computer science: Partial Correlation Networks.The structure of the project has been determined by our objectives through the development of it. At first, the characteristics of the studied instrument are explained, from the basic ideas up to the features of the model behind it, with the final goal of presenting SPACE model as a tool for estimating interconnections in between elements in large data sets. Afterwards, an illustrated simulation is performed in order to show the power and efficiency of the model presented. And at last, the model is put into practice by analyzing a relatively large data set of real world data, with the objective of assessing whether the proposed statistical instrument is valid and useful when applied to a real multivariate time series. In short, our main goals are to present the model and evaluate if Partial Correlation Network Analysis is an effective, useful instrument and allows finding valuable results from Big Data.As a result, the findings all along this project suggest the Partial Correlation Estimation by Joint Sparse Regression Models approach presented by Peng et al. (2009) to work well under the assumption of sparsity of data. Moreover, partial correlation networks are shown to be a very valid tool to represent cross-sectional interconnections in between elements in large data sets.The scope of this project is however limited, as there are some sections in which deeper analysis would have been appropriate. Considering intertemporal connections in between elements, the choice of the tuning parameter lambda, or a deeper analysis of the results in the real data application are examples of aspects in which this project could be completed.To sum up, the analyzed statistical tool has been proved to be a very useful instrument to find relationships that connect the elements present in a large data set. And after all, partial correlation networks allow the owner of this set to observe and analyze the existing linkages that could have been omitted otherwise.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
Background: The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLS http://regstattools.net intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease"s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis). Results: We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995-2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000-2004 data with that of 1995-1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000-2004 than in 1995-1999, whereas it was similar among women when these time periods were compared. Conclusions: Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require.
Resumo:
Report for the scientific sojourn carried out at the Darmouth College, from august 2007 until february 2008. It has been very successful, from different viewpoints: scientific, philosophical, human. We have definitely advanced, during the past six months, towards the comprehension of the behaviour of the fluctuations of the quantum vacuum in the presence of boundaries, moving and non-moving, and also in situations where the topology of space-time changes: the dynamical Casimir effect, regularization problems, particle creation statistics, according to different BC, etc. We have solved some longstanding problems and got in this subject quite remarkable results (as we will explain in more detail below). We also pursued a general approach towards a viable modified f(R) gravity in both the Jordan and the Einstein frames (which are known to be mathematically equivalent, but physically not so). A class of exponential, realistic modified gravities has been introduced by us and investigated with care. Special focus was made on step-class models, most promising from the phenomenological viewpoint and which provide a natural way to classify all viable modified gravities. One- and two-steps models were considered, but the analysis is extensible to N-step models. Both inflation in the early universe and the onset of recent accelerated expansion arise in these models in a natural, unified way, what makes them very promising. Moreover, it is monstrated in our work that models in this category easily pass all local tests, including stability of spherical body solution, non-violation of Newton's law, and generation of a very heavy positive mass for the additional scalar degree of freedom.
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
The 1994 Northridge earthquake sent ripples to insurance conpanieseverywhere. This was one in a series of natural disasters such asHurricane Andrew which together with the problems in Lloyd's of Londonhave insurance companies running for cover. This paper presents a calibration of the U.S. economy in a model with financial markets forinsurance derivatives that suggests the U.S. economy can deal with thedamage of natural catastrophe far better than one might think.