9 resultados para A.J. Singh
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Objective: The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted.Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with thecontinuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods: A workshopon CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT) Teaching Course,Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse softwaredeveloped within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performancewas assessed on a scale of 1 to 4 and, compared with experts’ performance. Results: Current dilemmas in the management ofunruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showedinterest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4) which was 63% (range 0–100%) of an expert user. Conclusions: Although participants showed a manifest interest in CFD, there was a clear lack ofawareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More effortstherefore are required to enhance understanding of the clinicians in the subject.
Resumo:
Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions
Resumo:
PURPOSE: Pharmacovigilance methods have advanced greatly during the last decades, making post-market drug assessment an essential drug evaluation component. These methods mainly rely on the use of spontaneous reporting systems and health information databases to collect expertise from huge amounts of real-world reports. The EU-ADR Web Platform was built to further facilitate accessing, monitoring and exploring these data, enabling an in-depth analysis of adverse drug reactions risks.METHODS: The EU-ADR Web Platform exploits the wealth of data collected within a large-scale European initiative, the EU-ADR project. Millions of electronic health records, provided by national health agencies, are mined for specific drug events, which are correlated with literature, protein and pathway data, resulting in a rich drug-event dataset. Next, advanced distributed computing methods are tailored to coordinate the execution of data-mining and statistical analysis tasks. This permits obtaining a ranked drug-event list, removing spurious entries and highlighting relationships with high risk potential.RESULTS: The EU-ADR Web Platform is an open workspace for the integrated analysis of pharmacovigilance datasets. Using this software, researchers can access a variety of tools provided by distinct partners in a single centralized environment. Besides performing standalone drug-event assessments, they can also control the pipeline for an improved batch analysis of custom datasets. Drug-event pairs can be substantiated and statistically analysed within the platform's innovative working environment.CONCLUSIONS: A pioneering workspace that helps in explaining the biological path of adverse drug reactions was developed within the EU-ADR project consortium. This tool, targeted at the pharmacovigilance community, is available online at https://bioinformatics.ua.pt/euadr/. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Sensor networks have many applications in monitoring and controlling of environmental properties such as sound, acceleration, vibration and temperature. Due to limitedresources in computation capability, memory and energy, they are vulnerable to many kinds of attacks. The ZigBee specification based on the 802.15.4 standard, defines a set of layers specifically suited to sensor networks. These layers support secure messaging using symmetric cryptographic. This paper presents two different ways for grabbing the cryptographic key in ZigBee: remote attack and physical attack. It also surveys and categorizes some additional attacks which can be performed on ZigBee networks: eavesdropping, spoofing, replay and DoS attacks at different layers. From this analysis, it is shown that some vulnerabilities still in the existing security schema in ZigBee technology.
Resumo:
Modern multimedia communication tools must have high security, high availability and high quality of service (QoS). Any security implementation will directly impact on QoS. This paper will investigate how end-to-end security impacts on QoS in Voice over Internet Protocol (VoIP). The QoS is measured in terms of lost packet ratio, latency and jitter using different encryption algorithms, no security and just the use of IP firewalls in Local and Wide Area Networks (LAN and WAN). The results of laboratory tests indicate that the impact on the overall performance of VoIP depends upon the bandwidth availability and encryption algorithm used. The implementation of any encryption algorithm in low bandwidth environments degrades the voice quality due to increased loss packets and packet latency, but as bandwidth increases encrypted VoIP calls provided better service compared to an unsecured environment.
Resumo:
Based on contingent claims analysis, CCA, this paper tries to estimate the systemic risk build-up in the European Economic and Monetary Union, EMU countries using a market based measure distance-to-default, DtD. It analyzes the individual and aggregated series for a comprehensive set of banks in each eurozone country over the period 2004-Q4 to 2013-Q2. Given the structural differences in financial sector and banking regulations at national level, the indices provide a useful indicator for monitoring country specific banking vulnerability and stress. We find that average DtD indicators are intuitive, forward-looking and timely risk indicators. The underlying trend, fluctuations and correlations among indices help us analyze the interdependence while cross-sectional differences in DtD prior to crisis suggest banking sector fragility in peripheral EMU countries.
Resumo:
This study attempts to identify and trace inter-linkages between sovereign and banking risk in the euro area. To this end, we use an indicator of banking risk in each country based on the Contingent Claim Analysis literature, and 10-year government yield spreads over Germany as a measure of sovereign risk. We apply a dynamic approach to testing for Granger causality between the two measures of risk in 10 euro area countries, allowing us to check for contagion in the form of a significant and abrupt increase in short-run causal linkages. The empirical results indicate that episodes of contagion vary considerably in both directions over time and within the different EMU countries. Significantly, we find that causal linkages tend to strengthen particularly at the time of major financial crises. The empirical evidence suggests the presence of contagion, mainly from banks to sovereigns.
Resumo:
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.