51 resultados para 1ST-PRINCIPLES CALCULATIONS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
An ab initio study of the adsorption processes on NOx compounds on (1 1 0) SnO2 surface is presented with the aim of providing theoretical hints for the development of improved NOx gas sensors. From first principles calculations (DFT¿GGA approximation), the most relevant NO and NO2 adsorption processes are analyzed by means of the estimation of their adsorption energies. The resulting values and the developed model are also corroborated with experimental desorption temperatures for NO and NO2, allowing us to explain the temperature-programmed desorption experiments. The interference of the SO2 poisoning agent on the studied processes is discussed and the adsorption site blocking consequences on sensing response are analyzed.
Resumo:
Defects in SnO2 nanowires have been studied by cathodoluminescence, and the obtained spectra have been compared with those measured on SnO2 nanocrystals of different sizes in order to reveal information about point defects not determined by other characterization techniques. Dependence of the luminescence bands on the thermal treatment temperatures and pre-treatment conditions have been determined pointing out their possible relation, due to the used treatment conditions, with the oxygen vacancy concentration. To explain these cathodoluminescence spectra and their behavior, a model based on first-principles calculations of the surface oxygen vacancies in the different crystallographic directions is proposed for corroborating the existence of surface state bands localized at energy values compatible with the found cathodoluminescence bands and with the gas sensing mechanisms. CL bands centered at 1.90 and 2.20 eV are attributed to the surface oxygen vacancies 100° coordinated with tin atoms, whereas CL bands centered at 2.37 and 2.75 eV are related to the surface oxygen vacancies 130° coordinated. This combined process of cathodoluminescence and ab initio calculations is shown to be a powerful tool for nanowire defect analysis.
Resumo:
We show both theoretical and experimental evidences of the appearance of ferromagnetism in MgO thin films. First-principles calculations allow predicting the possibility of the formation of a local moment in MgO, provided the existence of Mg vacancies which create holes on acceptor levels near the O 2p-dominated valence band. Magnetic measurements evidence of the existence of room-temperature ferromagnetism in MgO thin films. High-resolution transmission electron microscopy demonstrates the existence of cation vacancies in our samples. Finally, by applying the element specificity of the x-ray magnetic circular dichroism technique, we also demonstrate that the magnetic moments of the system arise from the spin polarization of the 2p electrons of oxygen atoms surrounding Mg vacancies.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
The electronic structure of the molecular solid Ni(tmdt)2, the only well characterized neutral molecular metal to date, has been studied by means of first-principles density functional calculations. It is shown that these calculations correctly describe the metallic vs semiconducting behavior of molecular conductors of this type. The origin of the band overlap leading to the metallic character and the associated Fermi surfaces has been studied.
Resumo:
According to official statistics, disabled people in Spain number 3.5 million and make up 8.8% of the Spanish population. This group of people are increasingly being recognised as members of society with equal rights, and many of their demands are gradually being transformed into solutions that benefit society as a whole. One example is improved accessibility. Accessible built environments are more human and inclusive places, as well as being easier to get around. Improved accessibility is now recognised as a requirement shared by all members of society, although it is achieved thanks to the demands of disabled people and their representatives. The 1st National Accessibility Plan is a strategic framework for action aimed at ensuring that new products, services and built environments are designed to be accessible for as many people as possible (Design for All) and that existing ones are gradually duly adapted.
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
We put together the different conceptual issues involved in measuring inequality of opportunity, discuss how these concepts have been translated into computable measures, and point out the problems and choices researchers face when implementing these measures. Our analysis identifies and suggests several new possibilities to measure inequality of opportunity. The approaches are illustrated with a selective survey of the empirical literature on income inequality of opportunity.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
In spite of its relative importance in the economy of many countriesand its growing interrelationships with other sectors, agriculture has traditionally been excluded from accounting standards. Nevertheless, to support its Common Agricultural Policy, for years the European Commission has been making an effort to obtain standardized information on the financial performance and condition of farms. Through the Farm Accountancy Data Network (FADN), every year data are gathered from a rotating sample of 60.000 professional farms across all member states. FADN data collection is not structured as an accounting cycle but as an extensive questionnaire. This questionnaire refers to assets, liabilities, revenues and expenses, and seems to try to obtain a "true and fair view" of the financial performance and condition of the farms it surveys. However, the definitions used in the questionnaire and the way data is aggregated often appear flawed from an accounting perspective. The objective of this paper is to contrast the accounting principles implicit in the FADN questionnaire with generally accepted accounting principles, particularly those found in the IVth Directive of the European Union, on the one hand, and those recently proposed by the International Accounting Standards Committees Steering Committeeon Agriculture in its Draft Statement of Principles, on the other hand. There are two reasons why this is useful. First, it allows to make suggestions how the information provided by FADN could be more in accordance with the accepted accounting framework, and become a more valuable tool for policy makers, farmers, and other stakeholders. Second, it helps assessing the suitability of FADN to become the starting point for a European accounting standard on agriculture.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.