155 resultados para spatially varying object pixel density
Resumo:
Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.
Resumo:
Prepositional phrases are the commonest kind of postmodification in all registers of English (Biber et al. 1999: 634). The locative ones that can be expanded into a defining relative clause (the books [which are] on the table) are usually expressed by such a construction in Spanish (los libros que están encima de la mesa) or by a phrase introduced by de (los libros de encima de la mesa). Wonder (1979) argues that Spanish allows locative phrases with prepositions other than de in the case of"situaciones"activas"" (el aterrizaje en pleno campo) as against"situaciones estáticas" (*el sofá en la sala), and if the phrase can be given an adverbial rather than, or in addition to, an adjectival interpretation (el ruido en la calle), especially if that phrase implies an alternative location for an object or contrast with another similar object (el sofá en la sala contigua). This paper further investigates this claim and looks at Spanish equivalents of English postmodifying prepositional phrases in general, while proposing an explanation for the choice of these different structures in Spanish based on considerations of lexical density. Resumen: Las frases preposicionales constituyen el tipo más frecuente de posmodificación en todos los registros del inglés (Biber et a. 1999: 634). En el español, las expresiones locativas suelen incorporar un pronombre relativo y un verbo (the books [which are] on the table > los libros que están encima de la mesa), o bien expresarse mediante una frase introducida por la preposición de (los libros de encima de la mesa). Wonder (1979) sostiene que el español permite el uso de preposiciones que no sean de en las frases locativas en el caso de"situaciones"activas"" (el aterrizaje en pleno campo) frente a"situaciones estáticas" (*el sofá en la sala), y también si la frase puede tener una función adverbial antes que, o además de, una interpretación adjetiva (el ruido en la calle), sobre todo si dicha frase encierra la idea de una posición alternativa para un objeto, o bien un contraste con otro objeto similar (el sofá en la sala contigua). El presente estudio pretende examinar este argumento y, además, explorar la posmodificación preposicional en español de un modo más general, a la par que propone una explicación sobre la elección de estructura en español que se basa en el criterio de la densidad léxica.
Resumo:
Memoria de TFC en el que se analiza el estándar SQL:1999 y se compara con PostgreeSQL y Oracle.
Resumo:
A consistent extension of local spin density approximation (LSDA) to account for mass and dielectric mismatches in nanocrystals is presented. The extension accounting for variable effective mass is exact. Illustrative comparisons with available configuration interaction calculations show that the approach is also very reliable when it comes to account for dielectric mismatches. The modified LSDA is as fast and computationally low demanding as LSDA. Therefore, it is a tool suitable to study large particle systems in inhomogeneous media without much effort.
Resumo:
Learning object repositories are a basic piece of virtual learning environments used for content management. Nevertheless, learning objects have special characteristics that make traditional solutions for content management ine ective. In particular, browsing and searching for learning objects cannot be based on the typical authoritative meta-data used for describing content, such as author, title or publicationdate, among others. We propose to build a social layer on top of a learning object repository, providing nal users with additional services fordescribing, rating and curating learning objects from a teaching perspective. All these interactions among users, services and resources can be captured and further analyzed, so both browsing and searching can be personalized according to user pro le and the educational context, helping users to nd the most valuable resources for their learning process. In this paper we propose to use reputation schemes and collaborative filtering techniques for improving the user interface of a DSpace based learning object repository.
Resumo:
In this paper we describe a proposal for defining the relationships between resources, users and services in a digital repository. Nowadays, virtual learning environments are widely used but digital repositories are not fully integrated yet into the learning process. Our final goal is to provide final users with recommendation systems and reputation schemes that help them to build a true learning community around the institutional repository, taking into account their educational context (i.e. the courses they are enrolled into) and their activity (i.e. system usage by their classmates and teachers). In order to do so, we extend the basic resource concept in a traditional digital repository by adding all the educational context and other elements from end-users' profiles, thus bridging users, resources and services, and shifting from a library-centered paradigm to a learning-centered one.
A performance lower bound for quadratic timing recovery accounting for the symbol transition density
Resumo:
The symbol transition density in a digitally modulated signal affects the performance of practical synchronization schemes designed for timing recovery. This paper focuses on the derivation of simple performance limits for the estimation of the time delay of a noisy linearly modulated signal in the presence of various degrees of symbol correlation produced by the varioustransition densities in the symbol streams. The paper develops high- and low-signal-to-noise ratio (SNR) approximations of the so-called (Gaussian) unconditional Cramér–Rao bound (UCRB),as well as general expressions that are applicable in all ranges of SNR. The derived bounds are valid only for the class of quadratic, non-data-aided (NDA) timing recovery schemes. To illustrate the validity of the derived bounds, they are compared with the actual performance achieved by some well-known quadratic NDA timing recovery schemes. The impact of the symbol transitiondensity on the classical threshold effect present in NDA timing recovery schemes is also analyzed. Previous work on performancebounds for timing recovery from various authors is generalized and unified in this contribution.
Resumo:
The inverse scattering problem concerning the determination of the joint time-delayDoppler-scale reflectivity density characterizing continuous target environments is addressed by recourse to the generalized frame theory. A reconstruction formula,involving the echoes of a frame of outgoing signals and its corresponding reciprocalframe, is developed. A ‘‘realistic’’ situation with respect to the transmission ofa finite number of signals is further considered. In such a case, our reconstruction formula is shown to yield the orthogonal projection of the reflectivity density onto a subspace generated by the transmitted signals.
Resumo:
Previous work has reported that it is not difficult to give people the illusion of ownership over an artificial body, providing a powerful tool for the investigation of the neural and cognitive mechanisms underlying body perception and self consciousness. We present an experimental study that uses immersive virtual reality (IVR) focused on identifying the perceptual building blocks of this illusion. We systematically manipulated visuotactile and visual sensorimotor contingencies, visual perspective, and the appearance of the virtual body in order to assess their relative role and mutual interaction. Consistent results from subjective reports and physiological measures showed that a first person perspective over a fake humanoid body is essential for eliciting a body ownership illusion. We found that the illusion of ownership can be generated when the virtual body has a realistic skin tone and spatially substitutes the real body seen from a first person perspective. In this case there is no need for an additional contribution of congruent visuotactile or sensorimotor cues. Additionally, we found that the processing of incongruent perceptual cues can be modulated by the level of the illusion: when the illusion is strong, incongruent cues are not experienced as incorrect. Participants exposed to asynchronous visuotactile stimulation can experience the ownership illusion and perceive touch as originating from an object seen to contact the virtual body. Analogously, when the level of realism of the virtual body is not high enough and/or when there is no spatial overlap between the two bodies, then the contribution of congruent multisensory and/or sensorimotor cues is required for evoking the illusion. On the basis of these results and inspired by findings from neurophysiological recordings in the monkey, we propose a model that accounts for many of the results reported in the literature.
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.
Resumo:
Motivated by experiments on activity in neuronal cultures [J. Soriano, M. Rodr ́ıguez Mart́ınez, T. Tlusty, and E. Moses, Proc. Natl. Acad. Sci. 105, 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erd̋os-Ŕenyi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.