165 resultados para Heterogeneous networks
Resumo:
In this paper we study the reconstruction of a network topology from the values of its betweenness centrality, a measure of the influence of each of its nodes in the dissemination of information over the network. We consider a simple metaheuristic, simulated annealing, as the combinatorial optimization method to generate the network from the values of the betweenness centrality. We compare the performance of this technique when reconstructing different categories of networks –random, regular, small-world, scale-free and clustered–. We show that the method allows an exact reconstruction of small networks and leads to good topological approximations in the case of networks with larger orders. The method can be used to generate a quasi-optimal topology fora communication network from a list with the values of the maximum allowable traffic for each node.
Resumo:
Broadcast transmission mode in ad hoc networks is critical to manage multihop routing or providing medium accesscontrol (MAC)-layer fairness. In this paper, it is shown that ahigher capacity to exchange information among neighbors may beobtained through a physical-MAC cross-layer design of the broadcastprotocol exploiting signal separation principles. Coherentdetection and separation of contending nodes is possible throughtraining sequences which are selected at random from a reducedset. Guidelines for the design of this set are derived for a lowimpact on the network performance and the receiver complexity.
Resumo:
What determines which inputs are initially considered and eventually adopted in the productionof new or improved goods? Why are some inputs much more prominent than others? We modelthe evolution of input linkages as a process where new producers first search for potentially usefulinputs and then decide which ones to adopt. A new product initially draws a set of 'essentialsuppliers'. The search stage is then confined to the network neighborhood of the latter, i.e., to theinputs used by the essential suppliers. The adoption decision is driven by a tradeoff between thebenefits accruing from input variety and the costs of input adoption. This has important implicationsfor the number of forward linkages that a product (input variety) develops over time. Inputdiffusion is fostered by network centrality ? an input that is initially represented in many networkneighborhoods is subsequently more likely to be adopted. This mechanism also delivers a powerlaw distribution of forward linkages. Our predictions continue to hold when varieties are aggregatedinto sectors. We can thus test them, using detailed sectoral US input-output tables. We showthat initial network proximity of a sector in 1967 significantly increases the likelihood of adoptionthroughout the subsequent four decades. The same is true for rapid productivity growth in aninput-producing sector. Our empirical results highlight two conditions for new products to becomecentral nodes: initial network proximity to prospective adopters, and technological progress thatreduces their relative price. Semiconductors met both conditions.
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Forecasting coal resources and reserves is critical for coal mine development. Thickness maps are commonly used for assessing coal resources and reserves; however they are limited for capturing coal splitting effects in thick and heterogeneous coal zones. As an alternative, three-dimensional geostatistical methods are used to populate facies distributionwithin a densely drilled heterogeneous coal zone in the As Pontes Basin (NWSpain). Coal distribution in this zone is mainly characterized by coal-dominated areas in the central parts of the basin interfingering with terrigenous-dominated alluvial fan zones at the margins. The three-dimensional models obtained are applied to forecast coal resources and reserves. Predictions using subsets of the entire dataset are also generated to understand the performance of methods under limited data constraints. Three-dimensional facies interpolation methods tend to overestimate coal resources and reserves due to interpolation smoothing. Facies simulation methods yield similar resource predictions than conventional thickness map approximations. Reserves predicted by facies simulation methods are mainly influenced by: a) the specific coal proportion threshold used to determine if a block can be recovered or not, and b) the capability of the modelling strategy to reproduce areal trends in coal proportions and splitting between coal-dominated and terrigenousdominated areas of the basin. Reserves predictions differ between the simulation methods, even with dense conditioning datasets. Simulation methods can be ranked according to the correlation of their outputs with predictions from the directly interpolated coal proportion maps: a) with low-density datasets sequential indicator simulation with trends yields the best correlation, b) with high-density datasets sequential indicator simulation with post-processing yields the best correlation, because the areal trends are provided implicitly by the dense conditioning data.
Resumo:
Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
Para preservar la biodiversidad de los ecosistemas forestales de la Europa mediterránea en escenarios actuales y futuros de cambio global mediante una gestión forestal sostenible es necesario determinar cómo influye el medio ambiente y las propias características de los bosques sobre la biodiversidad que éstos albergan. Con este propósito, se analizó la influencia de diferentes factores ambientales y de estructura y composición del bosque sobre la riqueza de aves forestales a escala 1 × 1 km en Cataluña (NE de España). Se construyeron modelos univariantes y multivariantes de redes neuronales para respectivamente explorar la respuesta individual a las variables y obtener un modelo parsimonioso (ecológicamente interpretable) y preciso. La superficie de bosque (con una fracción de cabida cubierta superior a 5%), la fracción de cabida cubierta media, la temperatura anual y la precipitación estival medias fueron los mejores predictores de la riqueza de aves forestales. La red neuronal multivariante obtenida tuvo una buena capacidad de generalización salvo en las localidades con una mayor riqueza. Además, los bosques con diferentes grados de apertura del dosel arbóreo, más maduros y más diversos en cuanto a su composición de especies arbóreas se asociaron de forma positiva con una mayor riqueza de aves forestales. Finalmente, se proporcionan directrices de gestión para la planificación forestal que permitan promover la diversidad ornítica en esta región de la Europa mediterránea.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
The loss of autonomy at advanced ages is not only associated with ageing, but also with the characteristics of the physical and social environment. Recent investigations have shown that social networks, social engagement and participation act like predictors of disability among the elderly. The aim of this study is to determine whether social networks are related to the development and progression of disability in the early years of old age. The source of data is the first wave of the survey "Processes of Vulnerability among Spanish Elderly", carried out in 2005 to a sample of 1 244 individuals. The population object of study is the cohort aged 70 to 74 years in metropolitan areas (Madrid and Barcelona) and not institutionalized. Disability is measured by the development of basic activities of daily life (ADL), and instrumental activities of daily life (IADL). The structural aspects of the social relationships are measured through the diversity of social networks and participation. We used the social network index (SNI). For each point over the SNI, the risk of developing any type of disability decreased by 49% (HR = 0.51, 95%CI = 0.31-0.82). The SNI was a decisive factor in all forecasting models constructed with some hazard ratios (HR) that ranged from 0.29 (95%CI = 0.14-0.59) in the first model to 0.43 (95%CI 0.20-0.90) in the full model. The results of the present study showed a strong association between an active social life, emotional support provided by friends and confidents and disability. These findings suggest a protective effect of social networks on disability. Also, these results indicate that some family and emotional ties have a significant effect on both the prevalence and the incidence of disability.
Resumo:
This paper presents the qualitative data collection process aimed at the study of the impactsocial relations and networks have on educational paths of immigrant students. In theframework of a R & D longitudinal study funded by the Ministry of Science and Innovation(2012-2014), the research team tracked the path of 87 immigrant students, from whom only 17successfully achieved the transition through the first and second year of Post-16 Education.A vast range of literature notes that relationships are an important part of migration process andsocial integration analysis, as well as school history in terms of success or failure. Through thefieldwork researchers collect the personal networks of all immigrant students from 3 highschools who were at that time attending last course of compulsory school. The network structureinfluences their social capital and therefore determines the resources, goods and types of supportindividuals can access. All these aspects are influential elements in the configuration anddevelopment of academic trajectories of immigrant students.At the end of the second year of Post-16 Education (two years later), the study captures personalnetworks of these students again, analyses and discusses their evolution and influence on theirpaths through qualitative interviews. Such interviews facilitated the discussion of theirrelationships while providing interesting narratives that are presented in the text. In order to do so, the biographical interpretive narrative method of interviewing is implemented.
Resumo:
This paper presents the qualitative data collection process aimed at the study of the impactsocial relations and networks have on educational paths of immigrant students. In theframework of a R & D longitudinal study funded by the Ministry of Science and Innovation(2012-2014), the research team tracked the path of 87 immigrant students, from whom only 17successfully achieved the transition through the first and second year of Post-16 Education.A vast range of literature notes that relationships are an important part of migration process andsocial integration analysis, as well as school history in terms of success or failure. Through thefieldwork researchers collect the personal networks of all immigrant students from 3 highschools who were at that time attending last course of compulsory school. The network structureinfluences their social capital and therefore determines the resources, goods and types of supportindividuals can access. All these aspects are influential elements in the configuration anddevelopment of academic trajectories of immigrant students.At the end of the second year of Post-16 Education (two years later), the study captures personalnetworks of these students again, analyses and discusses their evolution and influence on theirpaths through qualitative interviews. Such interviews facilitated the discussion of theirrelationships while providing interesting narratives that are presented in the text. In order to do so, the biographical interpretive narrative method of interviewing is implemented.
Resumo:
Motivated by experiments on activity in neuronal cultures [J. Soriano, M. Rodr ́ıguez Mart́ınez, T. Tlusty, and E. Moses, Proc. Natl. Acad. Sci. 105, 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erd̋os-Ŕenyi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.