119 resultados para thickness change
Resumo:
Freshwater ecosystems and their biodiversity are presently seriously threatened by global development and population growth, leading to increases in nutrient inputs and intensification of eutrophication-induced problems in receiving fresh waters, particularly in lakes. Climate change constitutes another threat exacerbating the symptoms of eutrophication and species migration and loss. Unequivocal evidence of climate change impacts is still highly fragmented despite the intensive research, in part due to the variety and uncertainty of climate models and underlying emission scenarios but also due to the different approaches applied to study its effects. We first describe the strengths and weaknesses of the multi-faceted approaches that are presently available for elucidating the effects of climate change in lakes, including space-for-time substitution, time series, experiments, palaeoecology and modelling. Reviewing combined results from studies based on the various approaches, we describe the likely effects of climate changes on biological communities, trophic dynamics and the ecological state of lakes. We further discuss potential mitigation and adaptation measures to counteract the effects of climate change on lakes and, finally, we highlight some of the future challenges that we face to improve our capacity for successful prediction.
Resumo:
The present study aimed to establish, by a consensus of experts, the stages and processes of change for weight management in overweight and obese people. The first step involved developing two questionnaires aimed at assessing stages and processes of change for weight loss in overweight and obese people. The processes-ofchange questionnaire consisted of 12 subscales, and contained 107 items. A three-round Delphi study was carried out through a website, where participants were asked to give their opinion about the representativeness and clarity of the scale items. The stages-of-change questionnaire consisted of five items and was presented in the final round of the study. A team of 66 experts in the obesity field from 29 countries participated in the study. They were selected either because they belonged to the organizing committee of international associations related to obesity, or because of their research career. The required changes in the questionnaire were made according to the opinions of the participants. Some of these were the result of the group statistical response, whereas others were due to the suggestions made by the participants. A final version of the questionnaire consisting of 63 items was eventually obtained. The present study produced two questionnaires to assess stages and processes of change for weight management. The strength of the study lies in the consensus reached by the panel of experts in order to establish the required content of the questionnaires. The two measures provide useful tools for practitioners who wish to tailor weight-management interventions according to transtheoretical model constructs.
Resumo:
The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
The Kyoto protocol allows Annex I countries to deduct carbon sequestered by land use, land-use change and forestry from their national carbon emissions. Thornley and Cannell (2000) demonstrated that the objectives of maximizing timber and carbon sequestration are not complementary. Based on this finding, this paper determines the optimal selective management regime taking into account the underlying biophysical and economic processes. The results show that the net benefits of carbon storage only compensate the decrease in net benefits of timber production once the carbon price has exceeded a certain threshold value. The sequestration costs are significantly lower than previous estimates
Resumo:
The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
The publication of the fourth IPCC report, as well as the number of research results reported in recent years about the regionalization of climate projections, were the driving forces to justify the update of the report on climate change in Catalonia. Specifically, the new IPCC report contains new climate projections at global and continental scales, while several international projects (especially European projects PRUDENCE and ENSEMBLES) have produced continental-scale climate projections, which allow for distinguishing between European regions. For Spain, some of these results have been included in a document commissioned by the“State Agency of Meteorology”. In addition, initiatives are being developed within Catalonia (in particular, by the Meteorological Service of Catalonia) to downscale climate projections in this area. The present paper synthesizes results of these and other previously published studies, as well as our own analysis of results of the ENSEMBLES project. The aim is to propose scenarios of variation in temperature and rainfall in Catalonia during the 21st Century. Thus, by the middle of this century temperatures could rise up to 2 C compared with that of the late 20th Century. These increases would probably be higher in summer than in winter, generalized across the territory but less pronounced in coastal areas. Rainfall, however, would not change much, but it could slightly decrease. Towards the end of the 21st Century, temperatures could rise to about 5 C above that of the last century, while the average rainfall could decrease by more than 10%. Increases in temperature would be higher in summer and in areas further from the coast. Rainfall would decrease especially during the summer, while it could even increase in winter in mountainous areas such as the Pyrenees.
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes
Resumo:
Sex change in the protandrous fish Amphiprion akallopisos Bleeker, 1853 (F.Pomacentridae) has been analysed. Experiments consisted of placing males together after being separated from their mates, and observe changes in gonad histology at different periods, in order to identify signs of the sex change process. The presence of a first invagination on the male gonad wall, and the observation of the first cortical alveoli oocytes as an indication of the beginning of the vitellogenesis process, was the first symptom of the sex change, which has been detected after 18 days in one of the males. Period needed for the sex changing process was size independent. The process by which wall invagination is converted into ovarian lumen in the future mature ovary is also described
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-sizespectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems
Resumo:
The technological advances and new organisation of the economy together with a change in ideas in consumer habits andlifestyle that have happened in the last 25 years have placed us in a new state of capitalism. The spatial translation of thisnew state has been immediate and implies among other changes the overcoming of the concept of scale. Commercialspaces and those of leisure and tourism offer us an unbeatable opportunity of exemplifying these changes because they arethe most effected by the new postmodern tendencies
Resumo:
Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in north-eastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future stream flows. The largest reduction (22-48% for 2076-2100) of stream flows is expected in the headwaters of the two wettest catchments, while lower decreases (22-32% for 2076-2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in stream flow, 50% and 34%, respectively (2076-2100). Thus, ecological flows might be noticeably impacted by climate change in the catchments, especially in the headwaters of those wet catchments.