149 resultados para stochastic stability
Resumo:
We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seiferts integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.
Resumo:
We propose a method to analytically show the possibility for the appearance of a maximum in the signal-to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based on the reduction to a one-dimensional dynamics in the adiabatic limit and in the topology of the phase space of the systems under study. Its application to other nonpotential systems is also discussed.
Resumo:
We show that a dispersion of monodomain ferromagnetic particles in a solid phase exhibits stochastic resonance when a driven linearly polarized magnetic field is applied. By using an adiabatic approach, we calculate the power spectrum, the distribution of residence times, and the mean first passage time. The behavior of these quantities is similar to the behavior of corresponding quantities in other systems where stochastic resonance has also been observed.
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
We study the effects of external noise in a one-dimensional model of front propagation. Noise is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic partial differential equation. Analytical and numerical results for the front shape and velocity are presented. The linear-marginal-stability theory is found to increase its range of validity in the presence of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic equation.
Resumo:
In this note we prove an existence and uniqueness result for the solution of multidimensional stochastic delay differential equations with normal reflection. The equations are driven by a fractional Brownian motion with Hurst parameter H > 1/2. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann¿Stieltjes integral.
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.